Протокол тестирования №155401

	Пользователь
ФИО	Устинова Елизавета Сергеевна
Логин	УстиноваЕС2
Группа	Химия
	Тест
Название	Химия
Тип теста	Контроль
Составитель	Шабанова И. В.
	Тестирование
Статус	На проверке
Начало	11.03.2025 13:04:54
Конец	11.03.2025 15:58:36
Длительность	02:53:42

	Результаты	
Шкала	Значение	Результат
Оценка*		
Балл		
МаксБалл		

	Краткий формат				
	Объект	Статус	Балл	Из (тах)	%
Корневая группа		частично	11	96	11.46
	Вопрос №1	верно	1	1	100
	Вопрос №2	верно	2	2	100
	Вопрос №3	неверно	0	2	0
	Вопрос №4	неверно	0	2	0
	Вопрос №5	верно	2	2	100
	Вопрос №6	неверно	0	2	0
	Вопрос №7	неверно	0	3	0
	Вопрос №8	верно	3	3	100
	Вопрос №9	неверно	0	1	0
	Вопрос №10	верно	3	3	100
	Вопрос №11	пропуск	0	25	0
	Вопрос №12	пропуск	0	25	0
	Вопрос №13	на проверке	{?}	25	0

		Вопрос №13	на проверке	{?}	25	0
		Ответы пользователя				
Nº1.	Верн	о (1 из 1)				
Степ	ень (кисления атома углерода, непосредственного связанного с	гидроксогруппо	й, равна н	нулю с спи	іртах:
■00000	♦ ○○○○	непредельных вторичных первичных третичных многоатомных				
№2.	Верн	о (2 из 2)				
Для	гомо.	итического способа разрыва связей характерны следующи	е типы реакций	:		Б
$leve{}$		Элиминирования				0
lacksquare	lacksquare	Радикального присоединения				1
		Нуклеофильного присоединения				0
		Электрофильного замещения				0

		Радикального замещения Нуклеофильного замещения	1 0
	редл	ерно (0 из 2) оженного перечня выберите все вещества, способные реагировать с водой:	
4 ⊗00≥0		этилбензоат толуол 2-нитропропан бутин 1,1-дихлорбутан	
		ерно (0 из 2)	
	ы. По У О О О О	- самопроизвольный процесс разрушения металла под действием агрессивных факторов окружающо типу агрессивных сред коррозию различают: контактную межкристаллитную газовую щелевую атмосферную подземную	цей
		ю (2 из 2)	
	→ □□	оженного перечня соединений выберите те вещества, для которых характерна оптическая изомерия метилэтиловый эфир этиленгликоль пентанон-2 2-бромпропановая кислота пентаналь	
		ерно (0 из 2)	
	→ → □	совая изомерия не характерна для следующих соединений: муравьиная кислота пентанон-2 бутан масляная кислота этилен	
		ерно (0 из 3)	
обра	зова 66	степень превращения в ацетилен метана в результате приведенного пирролиза, если из 100 л метан лось 99 л водорода. Ответ приведите в процентах с точностью до десятых. (без учета регистра)	ıa
	•	но (3 из 3)	U
доле	й Си 15,6	йте массу медного купороса (X) и воды (Y), необходимые для приготовления 200 г раствора с массов SO4 5%. В ответах массы приведите с точностью до десятых, через запятую без пробела (X,Y). ,184,4 ,184,4 (без учета регистра)	зой

№9. Неверно (0 из 1)

Установите соответствие между органическим соединением и типом сопряжения

 p, π – сопряжение 	 кротоновый альдегид
π,π - сопряжение	В) фенол
	С) винилметиловый эфир
	D) бензол
	Е) пиррол
	F) пенталиен – 1,3

Ответ:

Α	В	C	D	E	F
		_		-	-

1 211212

✓ 221212 (без учета регистра)

№10. Верно (3 из 3)

Установите соответствие между производственным аппаратом и технологическим процессом:

(2) (2) доменная печь

(4) (4) коксовая печь

(1) (1) электролизер

(3) (3) контактный аппарат

[1] получение водорода из воды

[2] производство чугуна

[3] получение оксида серы (VI)

[4] переработка каменного угля

№11. Пропуск (0 из 25)

«Белый купорос» - ценное минеральное сырье, входящее в состав нескольких видов комплексных микроудобрений, способствующих повышению урожайности сельскохозяйственных культур, повышению их устойчивости к неблагоприятным климатическим условиям (морозы, засуха). Также белый купорос является компонентом пищевых добавок в птице- и животноводстве, усиливающих иммунитет и повышающие аппетит. Изучая свойства действующего вещества данного минерала, аспирант Павел пропускал электрический ток через 260 г 8% -ного раствора ZnSO4. Когда объемы газов, образовавшихся на катоде и аноде, стали равны, эксперимент прекратили. Определили, что массовая доля ZnSO4 при этом уменьшилась, и стала равной 5,2%. К этому раствору аспирант добавил 106 г раствора кальцинированной соды с концентрацией 5%. Какая соль осталась в растворе? Рассчитайте ее массовую долю.

№12. Пропуск (0 из 25)

Карбонат кальция (мел) используется для известкования почв, с целью нейтрализации кислых почв. Карбонат кальция подвергли термическому разложению, в результате чего он частично разложился. При этом масса протонов уменьшилась на 8,4 г. Смесь компонентов, оставшуюся после термического воздействия, растворили в горячей воде, затем провели фильтрование. Через фильтрат пропустили углекислый газ. После окончания химической реакции воду выпарили. В смеси солей после выпаривания массовая доля кислорода составила 58,3%. Определите объем углекислого газа, который пропустили через фильтрат.

№13. На проверке ({?} из 25)

Осуществите цепочку превращения, назовите продукты реакций

C6H10Cl2
$$\rightarrow$$
 X \rightarrow Y \rightarrow CH_2-CH_2-C Ca \rightarrow Z \rightarrow F \rightarrow циклопентен CH_2-CH_2-C Ca

отправлено фото организатору

```
mucx (2, SO4)= 260.0,08=20,8(F)
      Puca (2,504) - 20, $ - 20,8 -0,129 mons
    (1) 22n SOy + 2420 - 72n b + 242 SOy + Ozt
   (2) 2 H20 - 2 H2 + 024
    My CTO AV (2n SO4) = X mares
             V, (Oz) = 0, 5 x mont
 st (1/20) = 9 mars; 2 (1/2) = 9 mons 2 (02) = 0,05 y mons
          9,5x+0,5y =4
         0.5x = 0.5y \implies x = 4
                              m(2n) = 65x (1)

m(0_2) = 32.0,5x + 32.0,5y = 2 + 32.0,5x = 32,5
   a) (KrO) = X mont
                                m\left( 1/_{2}\right) =2x\left( r\right)
                              AMBan = $65x+32x+2x=99x (1)
\Delta V(2nSQ_1) = x \text{ unais}
\Delta m(2nSQ_1) = x \text{ unais}
\Delta m(2nSQ_1) = 161x \implies 20,8 - 161x = -0,052
COCTABULUS YP-KLE: 260 - 99x
                             18878282
                             20,8-161x = 13,52-5,148x
                               155,852x=7,28
                                 X = 0,04671120,047 mano
                             m (20504) = 20,8-0,047.161=13,233 (t)
 mp-p9= 13,233; 0,052 = 254,4811
Mar (O3 = 106 · 0,05 = 5,3 r

(Na (O3) = 5,3 = 0,05 mono
                                                                CM. Cueg
```

1/2 N (12) Cally + Cal + Co. протоно > выямания пома (фиклическия) ΔM = 8,4(r) ΔV (Cally) = V (Cal) = V (Ch) = 8,4 = 9,191 mons 0,191 mono Ca O + 1/20 -> Ca /01/2 0,191-x 9191-x 9,191-x Cer (OH)2 + CO2 -> Ca CO3 mono Ca (M/2 + 2003 - Ca (MO3)2 man m (Ca (O3) = 45(0,191-x) . 100 = 19,1-100x (1) m (Call (O3)) = x.162 = 162x (r) m (caco) = 3.16/0,191-x)=109,168-48x m O(lakeg) = 6.16.x=96x (1) manea = 191-100x+162x = 191+62x m 0 = 9,168 + 48x + 96x = 9,168 + 48x $\frac{9,168+48x}{19,1+62x}=0,583$ XXXx X=0,166 mono V(CO2) = 0,191 -x +2x = 0,131+ x mono V (CO2) = 0,191+0, 166 = 0,357 mons V/(CO2) = 22, 4-0,357 = 7,9968, 2 8, Diber: 8 n

ANGINERY 2 X around Am (2000) = 161x Il neogen xcence * 112504 + Naz CO3 - Naz SO4+ 120+CO2 1 V(CO2)=AV (Ma, CO3) = V(M, SO4) = V, (N4, SQ4) = 0,047 mones VOCT Naz CO3 = 0,05-0,047 = 0,003 mont 2 (2, 50 m) = 13,233 = 0,082 mons 2, SOy + Na, CO3 - 2, CO3 + + Na, SO4 1 2 (2,504) = 2 (M2 CO3) = 2/2,003 = V2 Maz SO4 = 0,003 mones m 2n (03 = 0,003. 125 = 0,375(r) m (CO2) = 0,047.44=2,068 V (Na, SOu) = 0,047+0,003=0,05 mans V/ 2,50, = 0,082-0,003= 0,079 mous mppa = 25 4, 481 + 106-0, 975-2, 068= 358, 038pm) m (Naz SO4) = 0,05, 142=7,1 m (2n SO4) = 0,079, 161=12,7192(r) $\int_{0}^{\infty} \left(Nu_{2}SO_{4} \right) = \frac{7,1}{358,038} = 0,01983.100 = 1,983.2$ $\int (2004) = \frac{12,719}{358,038} -100\% = \frac{3,552\%}{3,552\%}$

N13 Gotolle Suknorekcen CH2 - CH2 - C O Ca + 2 H2D

Ch- Ch2 - Ch2 - C O Ca + 2 H2D

Ch- Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - Ch2 - C O Ca + 2 H2D

Ch2 - C O Ca + 2 The soy of the sate of the sat