ОТЗЫВ

Коломейцева Александра диссертации оппонента ПО официального Эдуардовича «Параметры и режимы работы мобильной ветро-солнечной представленной хозяйств», фермерских малых электростанции диссертационный совет 35.2.019.03 на базе ФГБОУ ВО Кубанский ГАУ на соискание ученой степени кандидата технических наук по специальности энергоснабжение электрооборудование И 4.3.2. Электротехнологии, агропромышленного комплекса

Актуальность темы исследования. Диссертационная работа посвящена определению параметров и режимов работы мобильной электростанции с использованием энергий ветра и солнца. Энергетический потенциал этих источников для Краснодарского края достаточно высок и его использование для надежного электроснабжения малых фермерских и крестьянских хозяйств является наиболее целесообразным. для обеспечения их надежным электроснабжением. Разработка мобильной электростанции с учетом особенностей и режимов нагрузки, параметров и особенностей централизованных и резервных источников энергии является актуальной и полученные результаты диссертационного исследования будут иметь хорошее практическое применение.

Структура и содержание работы. Диссертация состоит из введения, четырех глав, заключения, списка сокращений и условных обозначений, списка литературы из 132 наименований и трех приложений. Общий объем работы составляет 124 страницы и включает в себя 46 рисунков, 10 таблиц, 54 формулы и 3 страницы Приложений.

Во введении обоснована актуальность темы исследования, сформулированы цель и задачи, выносимые на защиту научные положения диссертации, сведения о научной новизне и практической значимости работы, методы и средства исследования и достоверность результатов, полученных в работе.

В первой главе обосновано применение мобильных ветро-солнечных электростанций для электроснабжения автономных потребителей электроэнергии малых фермерских хозяйств. Для повышения надежности предложено в качестве резервных источников использовать бензиновые или дизельные станции. Рассмотрены конструктивные решения и особенности работы известных мобильных электростанций, определены их недостатки, предложены варианты построения мобильных электростанций и определены их экономические и энергетические показатели. Установлена экономическая целесообразность применения ВИЭ для мобильных электростанций.

Во второй главе на основе анализа технических характеристик современных функциональных элементов разработана структурная схема

МВСЭ, включающая солнечные батареи и ветроэнергетическую установку, батареи аккумуляторов, бензоэлектростанцию, инвертор, контроллер и систему управления с разработкой алгоритма ее работы. Разработана методика расчёта мобильной электростанции на основе экономических показателей используемых источников. Разработаны основные этапы проектирования мобильных электростанций с использованием ВИЭ.

В третьей главе представлена функциональная схема автономных инверторов с промежуточным высокочастотным преобразованием, описан принцип действия и особенность их работы, разработана принципиальная электрическая схема инвертора. В программе SimInTech создана компьютерная модель для исследования работы инвертора в разных режимах его функционирования.

экспериментальных результаты главе приведены B четвертой исследований, полученные на испытательном стенде по исследованию работы инвертора с промежуточным высокочастотным звеном. Дана оценка данных сравнения путем исследований результатов достоверности исследований. экспериментальных моделирования И компьютерного Предложен графоаналитический способ выбора рациональной структуры технико-экономическое обоснование дано электростанции, постановки ветро-солнечных электростанций малой мощности на серийное производство.

В заключении приведены итоги выполненного исследования, разработаны рекомендации для производителей мобильных электростанций и сформулированы перспективы дальнейшей разработки темы.

Приложения содержат документы, подтверждающие внедрение и использование результатов научных исследований по теме диссертации в производство и учебный процесс.

Обоснованность и достоверность научных положений, выводов и рекомендаций

Достоверность научных положений, результатов работы, выводов и рекомендаций обоснована и подтверждается корректностью постановки задач, применением математического аппарата, методик и программ теоретического исследования и подтверждением результатов компьютерного и физического моделирования.

Научная и практическая значимость полученных результатов

Научная новизна полученных результатов заключается в разработке компьютерной модели инвертора напряжения с промежуточным высокочастотным преобразованием в основных режимах его функционирования; разработке алгоритма работы автоматизированной системы управления мобильной ветро-солнечной электростанцией и способа определения рациональной структуры мобильной энергоустановки на основе экономических и массогабаритных показателей.

Практической значимостью полученных результатов работы можно считать разработанную методику расчёта мобильной ветро-солнечной электростанции малой мощности, на основании которой можно определять ее конструктивные и режимные параметры и оптимальное соотношение мощностей отдельных источников энергии. Методика позволит специалистам и энергетикам предприятий и малых хозяйств выбирать эффективное электрооборудование с высокими технико-экономическими показателями.

Результаты разработок и пример структурно-схемного решения мобильной ветро-солнечной электростанции могут быть использованы проектными и производственными организациями для создания подобных электростанций с минимальными массогабаритными и высокими технико-экономическими показателями.

Основные публикации и апробация работы

Все содержание диссертации опубликовано в 20-ти научных статьях, из них 1- в БД Scopus, 8- в изданиях, рекомендованных ВАК РФ. Апробация работы состоялась на 4-х Всероссийских и 5-ти Международных научнопрактических конференциях.

Замечания по диссертационной работе

- 1. Что понимается под малой возобновляемой энергетикой в названии 1 главы диссертации? Можно ли говорить, что если есть малая, то существует и большая возобновляемая энергетика?
- 2. Ни в диссертации, ни в автореферате не указаны пункты паспорта специальности, по которой защищается диссертация и их соответствие названию и содержанию работы.
- 3. На стр. 11-12 автор указывает, что отличительной чертой МФХ является нестабильное потребление электроэнергии и в этом случае использование ВЭУ и СФЭУ для электроснабжения таких потребителей будет эффективным, поскольку характер поступления энергии от них также не стабильный. Каким образом нестабильность поступления энергии повышает эффективность электроснабжения?

- 4. Стр.37: Автор пишет, что «При расчётах интенсивность солнечного излучения принимают, как среднюю величину равную 635 $Bm/м^2$. В Краснодарском крае в ясный солнечный день эта величина находится в пределах от 950 до 1200 $Bm/м^2$ ». Какое все-таки значение было взято для расчета?
- 5. Вывод по 1 главе (стр.40) о том, что Краснодарский край имеет высокий уровень потенциала ветровой и солнечной энергетики ничем не подкреплен. Следовало бы привести какие-то данные по инсоляции солнечной энергии, среднегодовым скоростям ветра и т.д., на основании чего можно делать заключение об целесообразности этих источников.
- 6. На рис.2.1 контроллер заряда обозначен КЗ, что не соответствует текстовой части, где этот же контроллер обозначается как К.
- 7. Стр.46, рис.2.2. Если в работе автоматизированной системы управления учитывается только суммарная работа установок СФЭУ и ветровой ВЭУ энергии $P_{\text{ВИЭ}}$, зачем их включать в алгоритм, если их раздельная работа не предусмотрена.
- 8. В заключительной части диссертации указано, что работа доведена до технико-экономического обоснования постановки на серийное производство МВСЭ. Следовало бы указать, где предполагается такое производство, кто производитель, какое количество установок требуется для Краснодарского края?

Заключение

Указанные замечания и рекомендации не влияют на общее положительное впечатление по работе, в ней имеются все научные составляющие для представления работы к защите. Содержание автореферата соответствует содержанию диссертации.

Диссертационная работа Коломейцева Александра Эдуардовича «Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств» соответствует паспорту специальности 4.3.2. электрооборудование энергоснабжение Электротехнологии, И комплекса, имеет внутреннее единство и является агропромышленного завершенной научно-квалификационной работой, в которой на основании выполненных автором исследований содержится решение научной задачи создания мобильной ветро-солнечной электростанции малых фермерских хозяйств с разработкой автономного инвертора.

Диссертация соответствует требованиям к научно-квалификационным работам на соискание ученой степени кандидата технических наук в соответствие с п.9-11, 13 Положения о присуждении ученых степеней, утвержденного Постановлением Правительства Российской Федерации от 24.09.2013г, №842 «О порядке присуждения ученых степеней», а ее автор, Коломейцев Александр Эдуардович,

заслуживает присуждения ему ученой степени кандидата технических наук по специальности 4.3.2. - Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса.

Официальный оппонент,

профессор кафедры «Электрические станции, сети и системы электроснабжения» Федерального государственного бюджетного образовательного учреждения высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет), доктор технических наук, профессор

Ирина Михайловна Кирпичникова

July, «<u>25</u>» 03 2024

Адрес: 454080, Россия, г. Челябинск,

Пр-т Ленина, д. 76, +7(351)-267-99-16,

Эл. адрес: kirpichnikovaim@susu.ru

Подпись Кирпичниковой И.М. заверяю

ВЕРНОЛІТАТЬНИК СЛУЖОЫ

Начальник отульства ЮУУГУ делопроизводства ЮУУГУ Н.Е. Циулина Урсей

Председателю диссертационного совета 35.2.019.03 на базе ФГБОУ ВО Кубанский ГАУ С. В. Оськину

Сведения об официальном оппоненте

по диссертационной работе Коломейцева Александра Эдуардовича на тему: «Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств», представленной на соискание ученой степени кандидата технических наук по специальности 4.3.2. Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса (технические науки).

Фамилия, Имя, Отчество	Ирина Михайловна Кирпичникова
Ученая степень	доктор технических наук,
	05.20.02 – Электротехнологии и электрообору-
	дование в сельском хозяйстве
	Энергосберегающие системы электроочистки
Наименование	воздуха в сельскохозяйственных помещениях с
диссертации	повышенными требованиями к чистоте воздуха
Ученое звание	профессор
Полное наименование	Федеральное государственное автономное об-
организации в соответ-	разовательное учреждение высшего образова-
ствии	ния «Южно-Уральский государственный уни-
с уставом на момент	верситет (национальный исследовательский
представления отзыва	университет)»
Наименование подраз-	кафедра «Электрические станции, сети и си-
деления	стемы электроснабжения»
Должность	профессор
	454080, Уральский федеральный округ,
Адрес организации	Челябинская область, г. Челябинск,
места работы	просп. В.И. Ленина, д. 76

Телефон и официальный сайт организации места работы

8 (351) 267-99-16 https://www.susu.ru/ru

Основные публикации официального оппонента, затрагивающие сферу диссертационного исследования соискателя

- 1. Кирпичникова И.М. Проблема деградации солнечных модулей и пути ее решения / И.М. Кирпичникова // В сборнике: Малая энергетика: проблемы, задачи и перспективы. Материалы Международной научнопрактической конференции. Краснодар, 2023. С. 92—97.
- 2. Энергосберегающая система освещения помещений с использованием солнечных световодов / И.М. Кирпичникова, С.С. Шипилов, С. Минсинь, Ф. Фэнжуй // Энергобезопасность и энергосбережение. 2023. № 2. С. 21–24.
- 3. Кирпичникова И.М. Устройство для предотвращения загрязнения и деградации солнечных модулей / В.А. Заварухин, И.М. Кирпичникова, В.В. Шестакова // Патент на полезную модель RU 218045 U1, 04.05.2023. Заявка № 2023107268 от 27.03.2023.
- 4. Кирпичникова И.М. Снижение генерации электрической энергии солнечными модулями в условиях запыленности местности / И.М. Кирпичникова, И.Б. Махсумов, В.В. Шестакова // iPolytech Journal. − 2023. − Т. 27. − № 1. − С. 83–93.
- 5. Кирпичникова И.М. Энергетическая эффективность фотоэлектрических станций / И.М. Кирпичникова, С.С. Шипилов // Сантехника, Отопление, Кондиционирование. 2022. № 6 (246). –С. 69–71.
- 6. Кирпичникова И.М. Особенности работы солнечных энергоустановок в полярном климате / И.М. Кирпичникова // Энергобезопасность и энергосбережение. -2022. -№ 5. C. 32-36.
- 7. Kirpichnikova I. Investigation of the influence of elevated ambient temperatures on the operation of photovoltaic modules / I. Kirpichnikova, D. Chirov // В сборнике: Proceedings 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022. 2022. C. 214–219.
- 8. Kirpichnikova I.M. Simulation of the solar module considering the influence of internal and external parameters in Matlab/Simulink / I.M. Kirpichnikova, V.A. Zavarukhin // В сборнике: Proceedings 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022. 2022. C. 248–252.

- 9. Кирпичникова И.М. О Возможности применения возобновляемых источников энергии для объектов первой категории электроснабжения / И.М. Кирпичникова, С.С. Шипилов // Энергосбережение и водоподготовка. 2022. № 3 (137). С. 63–67.
- 10. Kirpichnikova I.M. Multivariable control of solar battery power by extremum seeking with hessian-driven gradient flows / A.Y. Sologubov, I.M. Kirpichnikova // В сборнике: Proceedings ICOECS 2021: 2021 International Conference on Electrotechnical Complexes and Systems. 2021. C. 202–208.
- 11. Kirpichnikova I.M. Multivariable control of solar battery power: electrotechnical complex as object with hessian-driven gradient flows / A.Yu. Sologubov, I.M. Kirpichnikova // Bulletin of South Ural State University. Series: Power Engineering. 2021. T. 21. \mathbb{N}_2 3. C. 57–65.
- 12. Кирпичникова И.М. Анализ становления большой и малой электрогенерации Южного Урала / И.М. Кирпичникова // Вестник Российского университета дружбы народов. Серия: Инженерные исследования. 2020. Т. 21. № 4. С. 302-308.

Доктор технических наук, профессор, профессор кафедры «Электрические станции, сети и системы электроснабжения» ФГАОУ ВО "ЮУрГУ (НИУ)"

«<u>З</u>» <u>ОЭ</u> 2024 г.

И.М. Кирпичникова

Подпись, ученую степень, ученое звание и должность Ирины Михайловны Кирпичниковой удостоверяю:

BEPHO

July,

Начальник службы делопроизводства 10 кгу Н.Е. Циулина

ОТЗЫВ

Официального оппонента доктора технических наук, профессора Велькина Владимира Ивановича на диссертацию Коломейцева Александра Эдуардовича «Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств», представленную к защите в диссертационный совет по защите докторских и кандидатских диссертаций 35.2.019.03, созданного на базе ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина» на соискание ученой степени кандидата технических наук по специальности 4.3.2. Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса

1. Актуальность темы

Актуальность темы диссертации не вызывает сомнения, поскольку сегодня для электроснабжения автономных потребителей электроэнергии сельскохозяйственного производства применяются топливные генераторы эксплуатационно-технические имеющие электроэнергии, низкие характеристики и небольшой ресурс работы, кроме того, их работа оказывает отрицательное воздействие Применение на экологию. электростанции, выполненной на базе возобновляемых источников энергии обеспечит бесперебойное электроснабжение потребителей электроэнергии и улучшит экологическую обстановку.

Диссертация Коломейцева Александра Эдуардовича посвящена решению обозначенной проблемы за счет применения мобильной ветросолнечной электростанции с высокими технико-тэкономическими показателями для генерации электроэнергии для эффективной работы которой обоснованы параметры и режимы работы.

2. Структура и объем диссертации

Представленная диссертация на соискание ученой степени кандидата технических наук содержит 124 страницы машинописного текста, 42 рисунка и 9 таблиц. Структурно работа выполнена в виде рукописи, состоящей из 4 введения, 4 глав, заключения, включающего в себя итоги выполненного исследования, рекомендации производству, перспективы дальнейшей разработки темы, список использованных источников и приложения.

Во введении раскрывается актуальность работы, приведена общая характеристика работы и её содержание. Введение оформлено в соответсвии с требованиями ГОСТ 7.0.11-2011 и содержит все перечисленные в нём основные структурные элементы.

В первой главе «Востребованность, основные показатели малой возобновляемой энергетики и анализ технических характеристик мобильных электростанций» проводится анализ востребованности возобновляемых источников фермерских хозяйствах, энергии малых приводятся автономных потребителей электрические параметры электроэнергии хозяйств, занимающихся разными видами деятельности. Рассматриваются конструктивные решения и особенности работы известных технических решений мобильных электростанций на возобновляемых источниках их характеристики и раскрываются энергии, приводятся недостатки. Представлены структурные схемы разных вариантов построения мобильных электростанций на возобновляемых источниках и основные характеристики их функциональных элементов. Приведены энергетические и экономические ветроэнергетических солнечных фотоэнергетических установок. Раскрыта научная проблема, сформулирована рабочая гипотеза, а также цель и задачи исследований.

Во второй главе «Разработка структурной схемы и методики расчёта мобильной ветро-солнечной электростанции» представлена структурная схема и алгоритм работы автоматической системы управления мобильной ветро-солнечной электростанцией, предлагается методика расчёта мобильной ветро-солнечной электростанции, включающая следующие основные этапы: оценка потенциала возобновляемых источников с среднемесячные значения получаемой них; определение стоимости OT функциональных элементов; построение графика нагрузок; определение мощности источников станции; выбор инвертора и контроллера; определение массогабаритных показателей и ориентировочной стоимости мобильной электростанции. Раскрыты основные этапы проектирования мобильных электростанций.

В третьей главе «Разработка инвертора напряжения для мобильной ветро-солнечной электростанции» предлагается функциональная схема автономного инвертора напряжения, выполненная на высокочастотном преобразователей, трансформаторе И реверсивном выпрямителе. Рассматривается алгоритм работы системы управления инвертором по преобразованию и стабилизации напряжения. Предлагается принципиальная напряжения электрическая схема разработанного инвертора управления, микропроцессорной которого выполненная на технике. Разработана компьютерная модель инвертора и проведены её исследования.

В четвертой главе «Экспериментальные исследования инвертора, оптимизация структуры и технико-экономическая оценка мобильных ветросолнечных электростанций» для подтверждения результатов теоретических разработан экспериментальный испытательный исследований содержащий высокочастотный преобразователь, трансформатор реверсивный качестве электроэнергии источника выпрямитель применялась аккумуляторная батарея. Представлена методика экспериментальных исследований и результаты исследований. Выполнена достоверности исследований, сопоставлением результатов компьютерного экспериментальных моделирования исследований. определения рациональной структуры Предложен способ энергоустановки на основе экономических и массогабаритных показателей. Проведено технико-экономическое обоснование постановки на серийное производство мобильных ветро-солнечных электростанций малой мощности.

В заключении проводятся итоги выполненного исследования, рекомендации производству и перспективы дальнейшей разработки темы.

Диссертационная работа оканчивается списком литературы из 132 наименований и тремя приложениями, представляющими собой акты использования результатов научных исследований и внедрения в учебный процесс.

3. Степень обоснованности и достоверности научных положений, выводов и рекомендаций, сформулированных в диссертации

Обоснованность и достоверность научных положений, выводов и рекомендаций, изложенных в диссертации, подтверждена результатами теоретических экспериментальных исследований, выполненных И использованием современной измерительной техникой. Автор достаточно корректно использует хорошо известные научные методы анализа и обоснования полученных результатов, выводов и рекомендаций. Автором изучены и критически проанализированы известные достижения в области малой возобновляемой энергетики и разработке солнечных инверторов чём свидетельствует достаточной объёмный напряжения, литературы из 132 наименований.

Методы проведённых исследований базируются на умелом применении теории электрических цепей, основ теории электрических машин и силовой преобразовательной техники, метода статической оценки точности результатов теоретических и экспериментальных исследований, а также в использовании программного комплекса SimInTech.

Основные положения, выводы и рекомендации диссертационной работы, представленные в заключении, являются новыми, и они полностью соответствуют представленными в диссертации результатам исследований.

Результаты теоретических и экспериментальных исследований были использованы для разработки солнечного инвертора напряжения на основе высокочастотного преобразователя и реверсивного выпрямителя, эффективное применение которых может позволить обеспечить устойчивую работу мобильной ветро-солнечной электростанции.

4. Оценка новизны и достоверности

Новыми научными результатами выдвинутые автором диссертационного исследования, являются:

- методика расчёта мобильной ветро-солнечной электростанции малой мощности, позволяющей определить ее параметры и режимы работы, а также оптимальное соотношение мощностей отдельных источников энергии;
- компьютерная модель инвертора напряжения в основных режимах его функционирования;
- алгоритм работы автоматизированной системы управления мобильной ветро-солнечной электростанцией;
- способ определения рациональной структуры мобильной энергоустановки на основе экономических и массогабаритных показателей.

Достоверность полученных результатов подтверждается хорошим уровнем совпадения данных теоретических и экспериментальных исследований.

5. Апробация работы, её реализация и публикации по теме исследования

Результаты выполненного диссертационного исследования докладывались и обсуждались на 5 международных и 4 всероссийских научно-практических конференциях. По теме диссертации опубликовано 20 научных работ, включая статью, размещенную в БД Scopus, и опубликовано 8 статей в изданиях, рекомендованных ВАК.

Материалы для оценки эффективности мобильных энергосистем, выполненных на возобновляемых источниках, переданы в ООО «Электротехнологии-Сервис». Методика инженерного расчёта, позволяющая определять параметры и оптимальные соотношения мощностей источников электроэнергии мобильных ветро-солнечных электростанций малой мощности, передана в ООО Солнечный центр». Результаты научных исследований используются в учебном процессе в ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина» по дисциплине «Электрооборудование возобновляемой энергетики».

6. Степень завершенности диссертации и качество оформления

Материалы, изложенные в диссертации логически взаимосвязаны. В главах раскрыты поставленные задачи, отражены и обоснованы результаты и выводы. Содержание диссертации изложено в опубликованных в открытой печати статьях и апробировано на российских и международных конференциях.

Цель и задачи исследований реализованы автором в полном объёме. Научные положения, выносимые на защиту, выводы и рекомендации являются обоснованными.

В целом диссертационная работа содержит все необходимые для кандидатской диссертации составляющие. Автореферат в достаточной мере отражает материал диссертационной работы, её основные положения и научные результаты.

7. Общие замечания по содержанию диссертации

Общие замечания и вопросы по работе:

- 1. Хотелось бы уточнить, что автор понимает под «малой возобновляемой энергетикой» (название первой главы)?
- 2. В соответствии с ГОСТ Р 51594-2000 «Нетрадиционная энергетика. Солнечная энергетика. Термины и определения» вместо понятия «солнечная батарея», применяемого в диссертации, следует употреблять «фотоэлектрический модуль».
- 3. В п.1.3 автором рассмотрены не все варианты построения мобильных электростанций.
- 4. На рисунке 2.1 (стр.44) не ясно, куда идут выводы «1...n» от автоматической системы управления АСУ.
- 5. В чём, на взгляд автора, отличие предлагаемой методики инженерного расчёта параметров мобильной электростанции от известных (п.2.2)?

6. Какой тип полупроводниковых приборов применялся в составе высокочастотного преобразователя и реверсивного выпрямителя в экспериментальной установке (п.4.1).

Отмеченные замечания не являются критическими и не влияют на основные теоретические и практические результаты диссертационного исследования Коломейцева Александра Эдуардовича.

8. Заключение

Диссертация Коломейцева Александра Эдуардовича «Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств», представляет собой законченную научно-исследовательскую работу, выполненную автором самостоятельно на актуальную тему для агропромышленного комплекса страны. Исследования проведены на достаточно высоком научно-методическом уровне с применением современных компьютерных технологий.

Диссертационная работа «Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств» отвечает требованиям п.9-11, 13 «Положения о порядке присуждения ученых степеней», предъявляемым к кандидатским диссертациям, а её автор Коломейцев Александр Эдуардович заслуживает присуждения ученой степени кандидата технических наук по специальности 4.3.2. Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса.

Велькин Владимир Иванович

Официальный оппонент

Доктор технических наук, доцент, ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», г. Екатеринбург, профессор кафедры атомных станций и возобновляемых источников энергии

Адрес электронной почты:

v.i.velkin@urfu.ru

Телефон: 8-922-104-62-48

«02»апреля 2024 г.

Почтовый адрес организации:

620002, Россия, г. Екатеринбург, ул. Мира, 19

Bulber

ФГАОУ ВО «Уральский федеральный университет имени первого Президен-

та России Б.Н. Ельцина»

ПОДПИСЬ

Ученый секретарь Урф! MOPO30BA B.A.

Председателю диссертационного совета 35.2.019.03 на базе ФГБОУ ВО Кубанский ГАУ С. В. Оськину

Сведения об официальном оппоненте

по диссертационной работе Коломейцева Александра Эдуардовича на тему: «Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств», представленной на соискание ученой степени кандидата технических наук по специальности 4.3.2. Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса (технические науки).

Фамилия, Имя, Отчество	Владимир Иванович Велькин
Ученая степень	доктор технических наук, 05.14.08 – Энергоустановки на основе возобнов- ляемых видов энергии
Наименование диссертации	Параметры и режимы работы мобильной ветро-солнечной электростанции малых фермерских хозяйств
Ученое звание	Доцент
Полное наименование организации в соответствии с уставом на момент представления отзыва	Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»
Наименование подраз- деления	кафедра «Атомные электростанции и возобнов- ляемые источники энергии»
Должность	профессор кафедры
Адрес организации места работы	620002, Свердловская область, г. Екатеринбург, ул. Мира, д. 19

Телефон и официаль-
ный сайт организации
места работы

8 (343) 375-44-44 https://urfu.ru/ru/

Основные публикации официального оппонента, затрагивающие сферу диссертационного исследования соискателя

- 1. Велькин В.И. О состоянии ветроэнергетики в Китае / Цзиньюань Лю., Велькин В.И. //В сборнике: Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и возобновляемые источники энергии. Атомная энергетика. Даниловские чтения 2021. Сборник научных трудов Международной научно-практической конференции. Екатеринбург, 2023. С. 472—482.
- 2. Experimental study on performance enhancement of a photovoltaic module incorporated with CPU heat pipe-a 5e analysis / Praveenkumar S., Gulakhmadov A., Agyekum E.B., T. Alwan N., Velkin V.I., Sharipov P., Safaraliev M., Chen Xi. // Sensors. 2022. T. 22. № 17. C. 6367.
- 3. Проект энергообеспечения обсерватории УрФУ микрогенерирующей установкой на основе ВИЭ / Конников В.А., Меньков В.О., Велькин В.И. // В сборнике: Ural Project Of Energy Conference 2022. Сборник статей участников Всероссийской конференции с международным участием. Екатеринбург, 2023. С. 66–70.
- 4. Design and simulation of a solar-wind stand-alone system with a seven-level inverter / Qasim M.A., Velkin V.I., Shcheklein S.E., Hossain I., Du Y. // Bulletin of South Ural State University. Series: Power Engineering. 2022. − T. 22. − № 3. − C. 5–17.
- 5. MPPT for hybrid wind, solar and thermoelectric power generation systems for off-grid applications / Qasim M.A., Velkin V.I., Alwan N.T., PraveenKumar S. // Bulletin of South Ural State University. Series: Power Engineering. 2022. − T. 22. − № 2. − C. 56–68.
- 6. Реконструкция и пуск многолопастной ВЭУ после разрушения штормовым ветром / Свистунов В.В., Хайретдинов И.Р., Хомитов Н.М., Велькин В.И. // В сборнике: Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и возобновляемые источники энергии. Атомная энергика. Даниловские чтения 2020. Сборник научных трудов. Министерство науки и высшего образования РФ, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Уральский энергетический институт. Екатеринбург, 2021. С. 389–393.
- 7. Использование CFD-моделирования для анализа влияния инсоляции и ветровой нагрузки на эффективность работы солнечных коллекторов / Литвинов Д.Н., Костарев В.С., Климова В.А., Велькин В.И. // В сборнике:

Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и возобновляемые источники энергии. Атомная энергетика. Даниловские чтения - 2020. сборник научных трудов. Министерство науки и высшего образования РФ, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Уральский энергетический институт. Екатеринбург, 2021. – С. 368–371.

- 8. Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation / Agyekum E.B., PraveenKumar S., Alwan N.T., Velkin V.I., Shcheklein S.E. // Heliyon. 2021. − T. 7. − № 9. − C. e07920.
- 9. Optimizing photovoltaic power plant site selection using analytical hierarchy process and density-based clustering policy implications for transmission network expansion, ghana / Agyekum E.B., Velkin V.I., Amjad F., Shah L. // Sustainable Energy Technologies and Assessments. 2021. T. 47. C. 101521.
- 10. Анализ влияния способов построения временных рядов солнечной инсоляции и скорости ветра на точность прогноза режима энергетических систем / Денисов К.С., Хайретдинов И.Р., Велькин В.И., Тырсин А.Н. // Вестник Московского энергетического института. Вестник МЭИ. − 2021. − № 4. − С. 44–52.
- 11. Использование цифровых технологий в исследовании возобновляемых источников энергии / Щеклеин С.Е., Немихин Ю.Е., Попов А.И., Велькин В.И., Коржавин С.А., Алван Н.Т. // Международный научный журнал Альтернативная энергетика и экология. 2020. № 25-27 (347-349). С. 165—183.
- 12. Исследование эффективности зарубежных и отечественных прикладных программ для расчёта комплексных энергетических систем на основе ВИЭ / Хайретдинов И.Р., Денисов К.С., Велькин В.И. // Окружающая среда и энерговедение. 2021. № 1 (9). С. 60—66.

Доктор технических наук, доцент, профессор кафедры «Атомные электростанции и возобновляемые источники энергии», ФГАОУ ВО «УрФУ имени первого Президента России

Б.Н. Ельцина»

«<u>02</u>» <u>04</u> 2024 г.

В. Велькин

Подпись, ученую степень, ученое звание и должность Владимира Ивановича Велькина удостоверяю:

гончарова н.в.