
Cracking in Reinforced Concrete Structures
of Buildings at Seismic Exposure

Mukhtar Bekkiev1(&) , Sergey Skuratov2 ,
Evgeniy Peresypkin3 , and Dmitry Vysokovsky4

1 High-Mountain Geophysical Institute, pr. Lenina, 2, 360030 Nalchik, Russia
ps62@yandex.ru

2 Sochi State University, Sovetskaya str., 26-A, 354000 Sochi, Russia
3 Kuban State Agrarian University, Kalinin str., 13, 350004 Krasnodar, Russia

4 Don State Technical University,
pl. Gagarina, 1, 344002 Rostov-on-Don, Russia

Abstract. Considered numerical experiment model considering simplified-tion,
and approximation on the basis of resonance-oscillatory scheme. The idea is
based on the cross-shear diagrams of structural failure. Reduce their thickness or
increase the possible load. The local nature of the action of the traveling wave
leads to the fact that the main phenomena in the wave process are concentrated
on the wave front, where the features in the distribution of deformations and
forces are concentrated. When the transverse wave propagates, local shifts arise,
generating transverse forces of large magnitude. The impact of a wave can
significantly exceed the ability of a structure to absorb energy by forming
fracture surfaces (cracks).
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1 Introduction

Often, the implementation of complex calculations of structures for seismic impacts is
perceived as an enhanced guarantee of reliability. But the actual behavior of the
structure in a strong earthquake depends on a large number of factors that are difficult to
formalize in the form of mathematical models [1, 3–7]. The forecast of seismic loading
characteristics, the reaction of the structure under alternating intensive dynamic impact
are uncertain. Besides, there are no universal calculation models. In order to establish
the limits of the applicability of a particular model, it is necessary to evaluate the
accepted simplifications and approximations on the final result, as well as neglect of
small quantities, which were considered as unimportant. For a complex system, it is
rarely possible to establish an estimate of this kind, and not all hypotheses and sim-
plifications have an experimental justification or are verifiable on a physical object,
physical model. In this case, numerical experiments are necessary, in which certain
parameters vary and the results obtained are estimated. Calculations are also needed for
fundamentally different models, and not for different software complexes built on
essentially one finite element model.
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Such fundamentally different are the model based on the resonance-vibrational
scheme, and themodel based on the shear-shear scheme of structural destruction. The last
one is realized when propagating along the construction of a traveling transverse wave.

2 Materials and Methods

Consider the conditions under which the formation of cracks in the path of a wave has a
single or multiple character. We assume equation of a plane wave in the form of

u x; tð Þ ¼ Aucos xt � kxþuð Þ ð1Þ

where Au - amplitude of oscillation; x - circular frequency; c - wave front speed; u -
initial phase; t – time; - coordinate along which the wave propagates; k ¼ x=c ¼ 2p=k
– wave number (- wavelength). His total energy of the wave (W), equal to the sum of
the kinetic ðKÞ and potential (P) energies at each instant of time, is, if the viscous
resistance of the medium is neglected, a constant value:

W ¼ Kþ P ¼ mx2A2
u=2; ð2Þ

m - mass of oscillating particles.
In the process of particle vibrations, only the conversion of potential energy to

kinetic energy occurs and vice versa, while maintaining their total value. The average
value of the kinetic energy ðKÞ paвнo is equal to the average value of the potential
energy (P) and is equal to half the total energy

K ¼ P ¼ W=2 ¼ mx2A2
u=4: ð3Þ

Dividing the total energy by the volume V ¼ m=q, where q is the density of the
medium material, we obtain the wave energy density

w ¼ W=V ¼ mx2A2
u=2

� �
= m=qð Þ ¼ qx2A2

u=2 ð4Þ

The quantity equal to the energy transferred by the wave through unit area S per
unit time is called the wave intensity (or energy flux density)

I ¼ DW= SDtð Þ ¼ P=S; ð5Þ

where P ¼ DW= SDtð Þ - wave power.
By the time Dt � T (T – Period of fluctuation) through the surface S will be

contained in the volume DV ¼ S � c � Dt energy DW ¼ wDV ¼ w � S � c � Dt, where c –
wave speed. Substitution of the obtained DW , and also w from (4) into (5) yields:

I ¼ DW= SDtð Þ ¼ wScDt= SDtð Þ ¼ wc ¼ cqx2A2
u=2 ð6Þ
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P ¼ DW=Dt ¼ w � S � c � Dt=Dt ¼ w � S � c ¼ c � q � x2 � A2
u � S=2 ð7Þ

Thus, the intensity of the wave is proportional to the seismic rigidity (c * q), the
square of the circular frequency and the square of the amplitude. If instead of the
circular frequency substitute its expression in a period x ¼ 2p=T , obtain

I ¼ 2p2c � q � A2
u=T

2 ð8Þ

When a crack is formed at each point on the line of its development, energy is
released R2= 2Eð Þ, where R - Resistance of the material to separation, E - modulus of
elasticity.

The release of energy due to crack opening occurs not only on its path, but also in
the adjacent areas up to lcrc в Both sides of the crack, that is, on the square 0:5 � lcrc �
2lcrc ¼ l2crc or in volume b � l2crc, where b – Section width, lcrc – crack length. The
intensity of the released energy upon opening the crack is obtained by dividing the
energy of the volume by the cross-sectional area and by the time Dtcrc, During which
the crack passed the path lcrc: Dtcrc ¼ lcrc=ccrc, where ccrc - Crack propagation velocity.

Thus, the intensity of the energy released when the crack opens:

Icrc ¼ R2= 2Eð Þ� � � b � l2crc=ðbh � DtcrcÞ
¼ R2= 2Eð Þ� � � b � l2crc= bh � lcrc=ccrcð Þ ¼ R2= 2Eð Þ� � � 1 � ccrc;

ð9Þ

here 1 ¼ lcrc=h – the relative length of the crack in comparison with the size of the
sectional height, in the direction of which the crack extends.

3 Results and Discussion

We make approximate estimates of the quantities determined by formulas (8) and (9).
Let the seismic rigidity of the building be 1.05 * 106 kg * m−2 * s−1 (Taken from

the book [1] with an effective (averaged) density qe = 700 kg/m3 and effective speed of
propagation of shear waves ces = 1500 m/s, the oscillation period will beand an
amplitude of 0:1 m: The intensity of the seismic wave according to the formula (8) will
be equal to:

I ¼ 2p2

T2 � cq � A2
u ¼ 2 � 3:14

2

0:42
� 1:05 � 106 � 0:12 ¼ 1:295 � 106N �m= m2 � s� �

For calculations using formula (9), we take a material (for example, concrete) with
the following characteristics:

R ¼ 2MPa ¼ 2 � 106N=m2;E ¼ 20000MPa ¼ 2 � 1010N=m2; ccrc ¼ 200m=s; 1
¼ 0:6:
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With these data, the intensity of energy release during the propagation of a crack
will be:

Icrc ¼ ½R2=ð2EÞ� � 1 � ccrc ¼ 2 � 106� �2
= 2 � 2 � 1010� �h i

� 0:6 � 200 ¼ 0:012 � 106

As it is seen, the velocity of wave propagation also significantly exceeds the speed
of propagation of a crack (ces = 1500 m/s > ccrc = 200 m/s). Under these conditions,
the development of cracks will be of a multiple nature, since the energy of the wave is
too great to form a single crack and, due to a much higher velocity, the wave “runs
away” from it, carrying its energy to form new and new cracks. In order to form no
more than one crack, the following condition must be fulfilled:

I=Icrc ¼ ð2p2=T2 � cq � A2
uÞ=f R2= 2Eð Þ� � � 1 � ccrcg\2; ð10Þ

From which the relation

c=ccrc\2 � R21 � T2=½ð2p2 � 2EÞ � q � A2
u�: ð11Þ

We substitute in (11) the data values used above:

c=ccrc\2 � 2 � 106� �2� 0:6 � 0:42 � =ð2 � 3:142 � 2 � 2 � 1010 � 700 � 0:12Þ ¼ 0:139:

The value obtained has no physical meaning, since the wave velocity cannot be less
than the crack speed. This is because the speed of the wave depends on the modulus of
elasticity, density, and, in general, on the coefficient of transverse deformation. Its
dependence on the structure of the material is mediated, since both the modulus of
elasticity and density are related to the structure. The speed of crack propagation
directly depends on the structure: the larger the total contact surface between the
heterogeneous components of the material, the smaller the average (or effective) crack
propagation velocity, since the cracks propagate predominantly over the contact sur-
faces between the matrix and the filler. This happens often (though not always) even
when the strength of the filler is lower than the strength of the matrix, since the
boundaries of dissimilar materials localize the features of the stress and strain fields. In
a perfectly homogeneous material, the propagation velocity of the wave and the
propagation speed of the crack coincide. In an inhomogeneous material, the propa-
gation velocity of the crack will be less than the velocity of propagation of the wave,
and the smaller, the larger the inhomogeneity index.

Therefore, only the multiple formation of cracks corresponds to the chosen values
of the parameters. But if the amplitude is half that of the oscillation period, and the
period of the oscillations is one and a half times higher than the above, the numerator of
the ratio (11) will increase by 2.25 times, the denominator will decrease by 4 times, and
the ratio (11) will be greater than unity, which is physically possible and corresponds to
the case Formation of a single crack.

We perform simple transformations for the ratio of the intensity of the wave (8) and
the intensity of energy release when the crack is opened (9):
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I=Icrc ¼ ð2p2=T2 � cq � A2
uÞ=f R2= 2Eð Þ� � � 1 � ccrcg ¼ 4p � cq � A2

u � E=ðT2 � R2 � 1 � ccrcÞ:

Bearing in mind the expression of the wave velocity through the modulus of
elasticity and density c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðE=qÞp

, wherefrom E ¼ c2q, expression of the amplitude of
the wave period Au and the acceleration of gravity ðgÞ:

T ¼ 2p Au=gð Þ1=2, - where from T2 ¼ 4p2Au=g, and also by introducing designation
kc ¼ c=ccrc, we obtain:

I=Icrc ¼ 4p2 � ðkc=1Þ � ðcqÞ2 � A2
u=ð4p2Au=g � R2Þ ¼ ðkc=1Þ � ðcqÞ2 � Au � g=R2: ð12Þ

If in the process of wave propagation no cracks are formed, inequality

ðkc=1Þ � ðcqÞ2 � Au � g=R2\1 ð13Þ

Or the inequality resulting from it

Au\1=ðkcgÞ � ½R=ðcqÞ�2 ð14Þ

In the last expression, we can get rid of the speed of the wave (c), using the
substitution c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðE=qÞp

. Then (14) takes the form

Au\1=ðkcgÞ � ½R=ðcqÞ�2 ¼ 1=ðkcgÞ � R2=ðE � qÞ; ð15Þ

More convenient in the sense that instead of the speed of the wave, the value of the
elasticity modulus more often encountered and experimentally simpler is used.

With the relative depth of the crack in the reinforced concrete structure (in com-
parison with the height of the cross section) 1 ¼ 0:6, acceleration of gravity
g = 10 m/s2, tensile strength of concrete R = 2 * 106 Pa, elastic modulus 25 * 109 Pa
and the density of concrete 2400 kg/m3 the relation between the amplitude of the wave
and the parameter kc, which is the ratio of the velocity of propagation of the wave to the
propagation velocity of the crack, appears in the form

Au\ð1=gÞ � ½R2=ðE � qÞ�=kc ¼ 0; 6=10ð Þ � ½ 2 � 106� �2
=ð2 � 109 � 2400Þ�=kc ¼ 0:004=kc

The restriction imposed on the amplitude of the wave to avoid the appearance of
cracks is proportional to the square of the tensile strength of the material and inversely
proportional to the square of the seismic rigidity ðE � q ¼ ðc � qÞ 2Þ and inversely
proportional to the ratio of the propagation velocities of the wave and crack kc.

The joint action of tangential stresses on shear forces and normal stresses caused by
longitudinal and flexural forces leads to the formation of inclined cracks. It should be
noted a very important feature of the development of inclined cracks, due to the
presence of two mechanisms of destruction - detachment (o) and shear (c).

Flexural normal cracks near the compressed zone, the size of which is determined
by the reinforcement factor, are braked, the detachment mechanism ceases to function
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(the stretching region before the tip of the crack contracts to the point), and the concrete
of the compressed zone is destroyed by the crushing mechanism, crushing. The
presence of cracks in the stretched zone has no effect on the course of failure in the final
stage, the leveling “plastic” deformations make the stress diagram in the compressed
zone close to rectangular, as a result of which the calculated and experimental
destructive forces are well coordinated without considering the process of crack
development.

A different picture takes place when an inclined crack develops. In the final (or
“terminal”) stage, the destruction of concrete in front of a crack occurs as a result of a
“cut”, that is, of the type (c), while the region of the stress and strain field before the tip
of the crack does not contract to a point, as in the case of peeled cracks. As a result,
disregard for the efforts that are being made in this area can lead to significant errors.
That is, with the destruction of the element from the action of transverse force, the
entire process, beginning from the stage of cracking and ending with the exhaustion of
the bearing capacity, proceeds as a process of development of a crack.

The account of shear deformations under transverse action is accompanied by a
decrease in the propagation velocity of forces, which is close to the velocity of
transverse waves. Without this account, this velocity is close to the velocity of lon-
gitudinal waves. The wave nature of the seismic action reflected in the calculation
model causes a slight change in the bending moments in comparison with the results of
the calculation without taking into account the wave effects, but shows a significant
increase in the transverse forces. This is an important circumstance that prompts a
serious adjustment of the resonance vibrational computational model.

Seismic action creates transverse forces of large magnitude in the vertical bearing
structures of structures. Tangent and compressive normal stresses along horizontal
platforms cause the appearance of the main tensile stresses along the areas oriented at
an angle to the initial ones:

a ¼ 0:5 � arctg 2s=r0ð Þ:

In the case when the tangential stresses s caused by the seismic load significantly
exceed the normal stress r0 from the intrinsic weight, the angle a is close to p/4.

Main tensile stresses r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

0=4þ s2Þ
p

� r0=2 lead to the formation of inclined
crack, the conditions of which are substantially different from those of dipping fractures
in such constructions fairly well studied as a beam under static loading.

The criterion for the development of inclined cracks in beams has the form [2, 8, 9]:

K2
I þK2

II ¼ K2
Ic þK2

IIc;

where KI , KIc - the stress intensity factor at the tip of the crack, growing under the
influence of the detachment mechanism, and its critical value;

KII , KIIc - The stress intensity factor at the tip of a crack that grows under the
influence of a shear-shear mechanism, and its critical value.

In vertical structural elements under the action of a seismic load, due to a short but
significant excess of KII over KI , the first term in the above criterion can be neglected;
In addition, the direction of the development of the crack is more specific in
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comparison with the beam, instead of the curvilinear trajectory of cracks in the beams,
we obtain a nearly rectilinear along the lines In vertical structural elements under the
action of a seismic load, due to a short but significant excess of KII over KI , the first
term in the above criterion can be neglected; In addition, the direction of the devel-
opment of the crack is more specific in comparison with the beam, instead of the
curvilinear trajectory of cracks in the beams, we obtain a nearly rectilinear along the
lines aþ p=2.

The dynamic nature of the load imposes additional restrictions on the process of
development of cracks. The short duration of the pulse and a significant decrease in the
propagation velocity of cracks in the concrete as compared to the speed of sound
propagation due to lengthening of the path when traversing large aggregate particles
can lead to the fact that the crack does not have time to dissect the cross section during
the time of the pulse. In addition, the impulse effect generates multiple micro-fractures
that grow simultaneously and mutually hamper development. For the critical density of
microfractures, apparently, one can take the size of the plastic region in front of the
crack tip in the Irvine model [10].

4 Conclusions

In this concept, many problems have been little investigated, in particular, the speed of
crack propagation in materials, the critical values of stress intensity coefficients at the
tops of cracks developing by shear and mixed mechanisms, and a number of others.
However, the study of the consequences of strong earthquakes leads us to conclude that
a new view is needed on the causes of seismic destruction, which could improve the
theory of seismic resistance and improve the reliability of building calculations for
seismic loading. At the same time, the transverse-shift concept should not be consid-
ered as an alternative to the resonant-vibrational concept. Each of them has its own
fields of application, it is important to determine these area.
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