

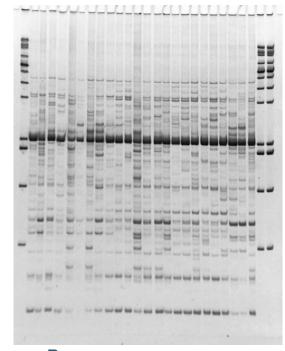
Генотипирование перспективных аборигенных сортов винограда Российской Федерации

ЦЕЛЬ ИССЛЕДОВАНИЯ

молекулярно-генетический анализ особенностей строения геномов аборигенных и интродуцированных сортов винограда с использованием маркеров, основанных на присутствии ретротранспозонных последовательностей в ядерном геноме.

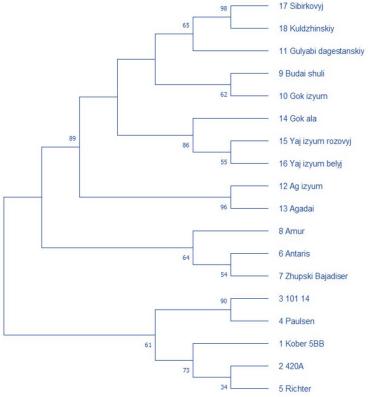
Название	ДНК последовательность праймера (5'-3')					
2374	CCCAGCAAACCA					
2375	TCGCATCAACCA					
2376	TAGATGGCACCA					
2075	CTCATGATGCCA					
2078	GCGGAGTCGCCA					
2095	GCTCGGATACCA					
2230	TCTAGGCGTCTGATACCA					
2373	GAACTTGCTCCGATGCCA					
2415	CATCGTAGGTGGGCGCCA					
2074	GCTCTGATACCA					

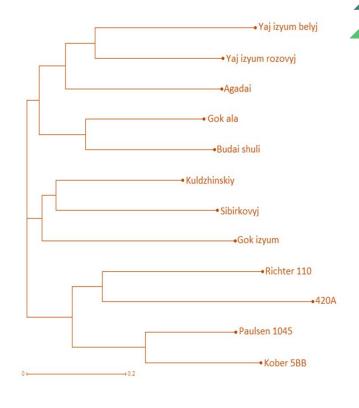
Анализ полученных данных планируется проводить *in silico* с использованием программ: MEGA 7, GenAlEx 6.3.



Результаты наблюдаемого генетического разнообразия и оценки полос у интродуцированных и аборигенных сортов

Nº	Название	PN	NTI	TNB	РВ	PPL (%)	NPB	Индекс Шеннона	Разнообразие
1	Кобер 5ББ	1	101	_	_	_	_	_	_
2	420A	1	113	_	_	-	_	_	_
3	101 14	1	101	_	_	-	_	_	_
4	Паульсен	1	130	_	_	_	_	_	_
5	Рихтер	1	103	548	304	55.43%	49	0.326	0.222
6	Антарис	2	127	_	_	-	_	-	_
7	Жупски Баядисер	2	97	-	-	-	-	-	_
8	Амур	2	105	329	115	35.10%	17	0.223	0.156
9	Будай шули	3	121	_	_	-	_	-	-
10	Гок изюм	3	131	_	-	-	-	ı	_
11	Гюляби дагестанский	3	163	ı	-	-	ı	-	_
12	Аг изюм	3	127	_	_	-	_	-	_
13	Агадаи	3	137	_	_	-	_	-	_
14	Гок ала	3	144	_	_	-	-	-	_
15	Яй изюм розовый	3	153	-	_	_	-	_	_
16	Яй изюм белый	3	131	-	_	_	ı	-	-
17	Сибирьковый	3	166	-	ı	_	ı	ı	_
18	Кульджинский	3	166	1439	977	67.90%	96	0.343	0.225
_	Всего	-	2316	_	2241	96.77%	162	0.460	0.298


PN — численность популяции; NTI — количество амплифицированных полос на генотип; TNB — общее количество полос на популяцию; PB — количество полиморфных полос; PPL — процент полиморфных полос; NPB — количество частных бендов.



Разделение продуктов амплификации маркера 2373

Древо, построенное с помощью программы MEGA X методом максимального сходства

Дерево, построенное с помощью программы DARWin 6.0 методом Weighted Neighbor-Joining

Анализ главных компонент, построенный на основе набора ретротранспозоных маркеров

Анализ главных компонент, построенный на основе набора SSR маркеров

ВЫВОДЫ

Впервые было выполнено изучение аборигенных, интродуцированных и подвойных сортов винограда, содержащихся в анапской зональной ампелографической коллекции Российской Федерации с использованием маркеров, основанных на ретротранспозонных последовательностях, мобильных ДНК элементов;

Впервые было проведено изучение филогенетических связей между исследуемыми редкими образцами ампелографической коллекции, были проведены анализ главных компонент и кластеризация изученных генотипов внутри сравниваемых популяций;

Для групп изученных сортов были проведены анализы частот встречаемости аллелей в популяциях, анализ молекулярно-генетического разнообрязия, рассчитаны генетические расстояния как между генотипами, так и между популяциями, в целом, а также проведен анализ главных компонент;

В результате работы были подтверждены предполагаемые взаимоотношения между исследованными генотипами. В частности, как и предполагалось, было подтверждено близкое родство таких генотипов как Яй изюм розовый и Яй изюм белый, Агадаи и Гок изюм.

В результате работы нами были выявлены также и неожиданные связи между образцами. В частности, нами была выявлена связь между такими сортами как Сибирьковый и Кульджинский, которая подтвердилась как и по результатам анализа с использованием ретротранспозонов, так и с использованием микросателлитных маркеров.

