


ИННОВАЦИОННЫЙ ПРОЕКТ

Разработка новых технологий повышения урожайности зерновых культур с использованием рострегуляторов

Авторы разработки, полное название организации-разработчика, владелец технологии, его статус, служебный и мобильный телефон.

Кайгородова Елена Алексеевна, д-р хим. наук, профессор; Конюшкин Леонид Васильевич, канд. хим. наук, ст. науч. сотр.; Костенко Екатерина Сергеевна, канд. хим. наук, доцент; Пестунова Светлана Анатольевна, канд. хим. наук, доцент; Барчукова Алла Яковлевна, канд. с.-х. наук, доцент; Чернышева Наталья Викторовна, канд. биол. наук, доцент.

Адрес: 350044, г. Краснодар, ул. Калинина, 13. ФГБОУ ВПО «Кубанский государственный аграрный университет». Факультет агрохимии и почвоведения, защиты растений, кафедра неорганической и аналитической химии. Тел.: 8 (918) 3960-538, e-mail: e_kaigorodova@mail.ru

Инновационный проект относится к сельскому хозяйству. Разработанные новые технологии повышения урожайности зерновых культур предполагают использование в качестве рострегуляторов нового химического соединения, проявляющего рострегулирующую активность.

Известные производные никотиновой кислоты, испытанные на рисе, озимой пшенице, кукурузе при обработке семян перед посевом в минимальных дозах 0,1–0,6 г/т семян (при расходе рабочего раствора 10 л/т семян) показали повышение посевных качеств семян (энергия прорастания, всхожесть, интенсивность прорастания). Использование препаратов позволяет повысить урожай риса на 12,6 %, озимой пшеницы — на 14,6 %, кукурузы — на 15,8 %.

Повышение урожайности и качества продукции превосходят существующие аналоги.

1, 2, 3 – контроль (кукуруза).

4, 5, 6 – опыт (кукуруза).

Таблица 1 — Влияние 6-метил-4-(2-пиридилсульфанил)-1,3-дигидрофуро[3,4-с]пиридин-3-она на посевные качества семян риса сорта «Лиман»

Препарат	Концентрация, массовая доля, %	Энергия прораста- ния,%	Всхо- жесть,%	Длина, см		Масса сухого вещества, г/100 проростков	
				корня	ростка	корней	ростков
Контроль		92,0	94,0	4,0	1,3	0,18	0,18
6-метил-4- (2-пири-дилсульфанил)- 1,3-дигидрофу-ро[3,4-с] пиридин-3-он	0,01	90,0	92,0	3,6	1,3	0,16	0,20
	0,005	92,0	94,0	4,1	1,4	0,18	0,24
	0,001	94,8	96,8	4,6	1,5	0,23	0,25
	0,0005	92,8	94,8	4,4	1,4	0,19	0,24
HCP ₀₅		2,9	2,9	0,1	0,05	0,01	0,01

Таблица 2 — Влияние регуляторов роста на урожайность риса сорта «Лиман» (при норме расхода рабочей жидкости 10 л/т семян риса)

Продорож	Доза,	Урожайность,	Прибавка к контролю	
Препарат	г/т семян	ц/га	ц/га	%
Контроль	_	59,7	_	_
6-метил-4-(2-пиридилсуль-фанил)- 1,3-дигидрофуро-[3,4-с]пиридин- 3-он	0,200	64,4	4,7	7,9
	0,400	67,2	7,5	12,6
	0,600	65,5	5,8	9,7
фуролан	0,422	64,5	4,8	8,0
HCP ₀₅		2,7		

Кубанский государственный аграрный университет включен в список научно-исследовательских сельскохозяйственных учреждений, допущенных к выполнению государственной тематики: «Проведение регистрационных испытаний в области определения биологической эффективности пестицидов и разработки регламентов их применения».

Интеллектуальная собственность: по данному инновационному проекту получено 3 патента на изобретения: патент на новое химическое соединение, проявляющее рострегулирующую активность на проростках и два патента на способы повышения урожайности озимой пшеницы, кукурузы, риса с применением известных производных никотиновой кислоты, испытанных в качестве рострегулятора.

Экономическая эффективность от использования разработки. Использование препаратов позволяет повысить урожайность зерновых культур. Экономическая эффективность от использования препаратов может быть посчитана после проведения токсикологических испытаний.

Коммерческое предложение. Полученные результаты позволяют расширить список пестицидов и агрохимикатов, разрешенных к применению на территории РФ.

Для коммерческого использования высокоэффективных препаратов на зерновых культурах (озимой пшенице, рисе, кукурузе) необходимо проведение токсикологических исследований и регистрационных испытаний.

Требуемый объем финансирования. 5 млн руб.

