Аннотация рабочей программы дисциплины «Численное моделирование и расчет строительных конструкций»

1. Цель дисциплины

Системное овладение механикой, как фундаментальной основой для расчета и создания эффективных конструкций, и современными вычислительными комплексами как средствами реализации инженерных решений

2. Задачи дисциплины

- научиться активной постановке задачи управления НДС конструкций;
- творчески подходить к вопросам создания конструкций нового типа;
- научиться овладевать новыми технологиями, в частности нейротехнологиями.

3. Содержание дисциплины

В результате освоения дисциплины обучающиеся изучат теоретический и практический материал по следующим темам:

Тема 1. Объекты расчета и проблемы моделирования стержневых систем

- Системное описание основной проблемы строительной механики.
- Общие проблемы моделирования стержневых систем.
- Связь расчетной схемы с реальным сооружением, эксперимент и практический опыт.

Тема 2. Проблемы моделирования двумерных и объемных упругих тел

- Повторение основных теорем об упругих системах. Дифференциальные и вариационноразностные формулировки задач строительной механики и теории упругости. Конечные элементы и их свойства.
 - Проблемы моделирования двухмерных тел. Моделирование конечно-элементной сеткой.
 - Проблемы моделирования объемных тел.
- Вычислительные модели. Принципы построения и сложившаяся общепринятая структура наиболее известных программных комплексов. Входной и выходной интерфейс. Методы расчета.
 - Ошибки и ловушки. Погрешности вычислений и способы их устранения.

Тема 4.Динамика зданий и сооружений.

- Расчет плитно-стержневых систем на жестких и упругих опорах на статические и динамические воздействия.
 - Плитные фундаменты и пространственные фундаментные платформы на упругом основании

Тема 5. Применение нейросетевых технологий для расчета строительных конструкций.

- Применение нейросетевых технологий для задач строительной механики и строительных конструкций
 - Применение нейросетевых аппроксимации в задачах строительной механики

Тема 6

- Применение нейросетевых технологий для прогноза напряженно-деформированного состояния строительных конструкций

4. Объем дисциплины

Объем дисциплины 108 часов, 3 зачетных единицы. Дисциплина изучается на 2 курсе, в 4 семестре.

По итогам изучаемой дисциплины студенты (обучающиеся) сдают зачет с оценкой в 4 семестре.