ПРИМЕРЫ ТЕСТОВЫХ ЗАДАНИЙ С ОТВЕТАМИ

1. Линейная алгебра с элементами аналитической геометрии

	NoNo	Задания	Варианты ответов
	1	Дана матрица $A = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 1 & -1 \\ 5 & 0 & 6 \end{pmatrix}$. Сумма элементов, расположенных на главной диагонали этой матрицы равна	1. 2 2. 4 × 3. 8 4. 11
	2	Дана матрица $A = \begin{pmatrix} 1 & 2 & -3 \\ 9 & -1 & 2 \\ 3 & 4 & 6 \end{pmatrix}$. Сумма элементов, расположенных на главной диагонали этой матрицы равна	1. 6 v 21 3. 5 4. 0
halh his	33 kg/ 21/52/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/	Дана матрица $A = \begin{pmatrix} -3 & 1 & 7 \\ 5 & 3 & 6 \\ 1 & 9 & 1 \end{pmatrix}$. Произведение элементов, расположенных на главной диагонали матрицы, равно	9

	4	Дана матрица $A = \begin{pmatrix} 31 & 5 & -2 \\ 3 & 8 & 1 \\ 1 & -1 & 36 \end{pmatrix}$. Произведение элементов, расположенных на побочной диагонали матрицы, равно	16
	5	Дана матрица $A = \begin{pmatrix} 3 & -1 \\ -5 & -4 \end{pmatrix}$. Алгебраическое дополнение элемента $a_{21} = -5$ матрицы Аравно	15 2. 3 31 4. 1
	6	Если $A = \begin{pmatrix} 4 & 3 \\ 6 & -5 \end{pmatrix}$, то матрица 4A имеет вид	$ \begin{array}{cccc} & 1. & \begin{pmatrix} 16 & 12 \\ 24 & -20 \end{pmatrix} \\ 2. & \begin{pmatrix} -16 & -12 \\ -24 & 20 \end{pmatrix} \\ 3. & \begin{pmatrix} 16 & 12 \\ 6 & -5 \end{pmatrix} \\ 4. & \begin{pmatrix} 4 & 3 \\ 24 & -20 \end{pmatrix} \end{array} $
hath his	7 STORY ACK	Для матриц $A = \begin{pmatrix} -2 & 10 \\ 3 & 7 \end{pmatrix} \text{ и } B = \begin{pmatrix} 5 & -2 \\ 3 & 1 \end{pmatrix}$ сумма A + B равна	$ \begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & & $
		Chairs Pho	

	8	Для матриц	$1. \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix}$
		$A = \begin{pmatrix} 5 & -1 \\ 4 & 8 \end{pmatrix} \mathbf{H} B = \begin{pmatrix} 5 & -2 \\ 3 & 9 \end{pmatrix}$	$\begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}$
		$\begin{bmatrix} 1 & (4 & 8) & 1 & 2 & -(3 & 9) \end{bmatrix}$	$2. \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$
		разность А – В равна	$3.$ $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$
			$\checkmark 4.$ $\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$
			(1 -1)
	9	Размер матрицы	1. 4x2
		(-8 7 3 5)	2. 8 v 3. 2x4
		$A = \begin{pmatrix} -8 & 7 & 3 & 5 \\ 2 & 0 & 1 & -9 \end{pmatrix}$ paseH	4. 1x1
	10	Размер матрицы	1. 3x1
	10		2. 3 3. 0x3
		A = 9 - 7 1 paseH	3. 0x3 v 4. 1x3
	11	Пани матрини	$1. \begin{pmatrix} 3 & 6 \\ 2 & -3 \end{pmatrix}$
	11	Даны матрицы $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \text{и} B = \begin{pmatrix} -2 & 3 \\ 1 & 0 \end{pmatrix}. \text{Тогда}$	
		$A \cdot B$ равно	$\begin{pmatrix} 2 & -3 \end{pmatrix}$
		22 publio	$3. \qquad \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$
	J. Tek		$4. \qquad \begin{pmatrix} -3 & 6 \\ 2 & 3 \end{pmatrix}$
hath his	12	(-2, -1, 3)	1 0
914	16/2	Ранг матрицы $A = \begin{pmatrix} -2 & -1 & 3 \\ 2 & 0 & 6 \\ 1 & 1 & 0 \end{pmatrix}$ равен	2. 1
G.	702	равен	3. 2 v 4. 3
	b	равен	
		The Ales	
		76	

	13	Заданы матрицы $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix} \text{и} B = \begin{pmatrix} 2 & -2 \\ 3 & 4 \\ 1 & 1 \end{pmatrix}.$ Суммой $A^T - 2B$ является	1. $\begin{pmatrix} 3 & -3 \\ 4 & 8 \\ -1 & 0 \end{pmatrix}$ $\checkmark 2. \begin{pmatrix} -3 & 3 \\ -4 & -8 \\ 1 & 0 \end{pmatrix}$ 3. $\begin{pmatrix} 2 & 8 & 7 \\ -6 & 12 & 2 \end{pmatrix}$ 4. $\begin{pmatrix} -3 & -4 & 1 \\ 3 & -8 & 0 \end{pmatrix}$
	14	Определитель $\begin{vmatrix} 3 & 2 & 1 \\ -2 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix}$ равен	11 2. 1 y 35 4. 5
	15	Определитель $\begin{vmatrix} 3 & 7 \\ -4 & -2 \end{vmatrix}$ равен	1. 22 2. 20 334 v 4. 22
	16	Определитель $\begin{vmatrix} 3 & 2 & 0 \\ -1 & \alpha & 7 \\ 1 & -2 & 1 \end{vmatrix}$ равен нулю при α равном	
halh hish	17	Векторы $\vec{a}(2;1;-5)$ и $\vec{b}(2;3k;2)$ перпендикулярны, если k равно	12 2. 4 × 3. 2 44
		blichairs bho	


1	8	Расположить векторы в порядке возрастания их модулей.	① $\vec{a} = (-1;0;1)$ ③ $\vec{b} = (2;-1;3)$ ② $\vec{c} = (1;-1;-2)$ ④ $\vec{d} = (3;-1;1)$
1	9	Расстояние между точками $A(14;6)$ и $B(8;-2)$ равно	1. 20 2. 16 3. 15 4. 10
2	20	Прямая проходит через точки O(0;0) и A(1;-2). Ее угловой коэффициент равен	$\begin{array}{cccc} & 1. & -2 \\ & 2. & 2 \\ & 3. & \frac{1}{2} \\ & 4. & -\frac{1}{2} \end{array}$
2	21	Скалярное произведение векторов $\vec{a} = (0;4;-3)$ и $\vec{b} = (-2;-2;7)$ равно	29
thath.	2	Даны точки $A(3;-1)$ и $B(-1;4)$. Координаты середины отрезка равны	(1; 1,5)
200	352	Даны точки $A(5;-8)$ и $B(-3;14)$. Ордината середины отрезка AB равна	3

	24	Даны точки $A(8;8)$ и $B(-2;8)$. Абсцисса середины отрезка AB равна		3
	25	Прямая $3x + 5y - 5 = 0$ пересекает ось ОУ в точке с координатами	2. 3.	(0;4) (0;3) (0;2) (0;1)
	26	Угловой коэффициент прямой $x-3y+5=0$ равен	× 2. 3.	
	27	Прямая, заданная уравнением - $-y = -x + 3$,	2. начало 3.п точке (о координат ересекает ось ОХ в (-3; 0) ересекает ось ОҮ в
hath.	28	Нормальный вектор плоскости $2x + 5y - z = 0$ имеет координаты	2. v 3.	(-2;-5;-1) (2;-5;1) (2;5;-1) (-2;5;1)
	29	Расстояние между точками $A(0;2)$ и $B(m;6)$ равно 5, если m равно	1. 2. 3.	0 1 2
		· b/b		

ſ		1	
			v 4. 3
	30	Скалярное произведение векторов $ \vec{a} = 5$, $ \vec{b} = 2$, если $\varphi(\vec{a}, \vec{b}) = 60^{\circ}$, равно	5
	31	Установить соответствие между парами прямых и их взаимным расположением. 10 $6x-y+4=0$, $3x+7y-1=0$ 20 $2x-y+6=0$, $2x-y-3=0$ 30 $3x+4y-1=0$, $6x+8y-2=0$ 40 $x-4y+2=0$, $4x+y-8=0$	параллельныпересекаютсяперпендикулярнысовпадают
	32	Если уравнение гиперболы имеет вид $\frac{x^2}{9} - \frac{y^2}{16} = 1$, то длина ее действительной полуоси равна	1. 16 2. 9 3. 4 v 4. 3
P	33	Окружность $(x-1)^2 + (y+3)^2 = 4^2$ проходит через точку с координатами	1. A (2, 3) 2. B (-1, 0) 3. C (1, 2) 4. D (1; 1)
Dally.	14 A	2. Введение в ан	нализ
	34 2	Областью определения функции $y = \frac{2x-3}{x^2-25}$ является	1.($-\infty$; $+\infty$) \vee 2. $-\infty$; $-5 \cup -5$; $5 \cup 5$; $+\infty$ 3.($-\infty$; -5) \cup (-5 ; $+\infty$)

			4. $(-\infty; -5] \cup [-5; +\infty)$
	35	Сколько точек перегиба имеет функция $y = \frac{2x-1}{x^2}$	1. 0 v 2. 1 3. 2 4. 3
	36	Сколько точек перегиба имеет функция $y = 3 + \frac{1}{x}$	 1. 0 2. 1 3. 2 4. 3
	37	Вычислить $\lim_{x\to\infty} \frac{2x^3 - x^2 + 1}{x + 2x^2 - 89} \dots$	1. 0 $\sqrt{2}$. ∞ 3. $\frac{1}{2}$ 4. 2
	38	Вычислить $\lim_{x\to\infty} \frac{2x^3 - x + 1}{x + 2x^3 - 8} \dots$	1. 0 \checkmark 2. 1 3. $\frac{1}{2}$ 4. 2
h.c.	39	Производная функции $y = 3\sin(2x - 1)$ равна	1. $y = -6\cos(2x-1)$ $y = -6\cos(2x-1)$ 2. $y = 6\cos(2x-1)$ 3. $y = -6x\cos(2x-1)$ 4. $y = 3\cos(2x-1)$
nath.hi	40	Найти точки экстремума функции $y = x^2 + 4 \dots$	1. (0; 0) > 2. (0; 4) 3. (4; 0) 4. (1; 1)

41	График	функции
-T.T.	Ιραφηκ	функции

на промежутке (a;b)соответствует условиям...

$$\sqrt{1}$$
. $y > 0, y' < 0, y'' < 0$

2.
$$y > 0, y' < 0, y'' > 0$$

3.
$$y > 0, y' > 0, y'' > 0$$

4.
$$y > 0, y' > 0, y'' < 0$$

3. Функции нескольких переменных

42 Частная производная
$$z'_y$$
 функции $z = x^2 - y^3 + 15x + 10$ равна...

1.
$$2x-15y^2+15$$

2.
$$2x+15$$

3.
$$x+10$$

$$\vee$$
 4. $-3v^2$

43 Частная производная по
$$x$$
 функции $z = yx + \cos 5y + \sin x$ равна...

$$\vee$$
 1. $y + \cos x$

2.
$$y+x+\cos 5x$$

3.
$$xy + \sin 5x$$

4.
$$y + \cos 5x$$

4. Интегральное исчисление

44 Первообразная функции
$$y = x^7$$
 равна...

1.
$$7x^6$$

$$\vee 2. \frac{1}{8}x^{8}$$

3.
$$\frac{1}{7}x^7 + C$$

4.
$$\frac{1}{7}x^{2}$$

45	Интеграл $\int_{0}^{3} (x^2+3)dx$ равен	 1. 18 2. 16 3. 12 4. 10
46	Решить вопрос о сходимости интеграла $\int_{2}^{\infty} \frac{dx}{3x}$.	 1. сходится и равен 1 2. сходится и равен 0 √ 3. расходится 4. сходится и равен -1
	5. Дифференциальные	е уравнения
47	Общим решением дифференциального уравнения $y' = 2x$ является	1. $y^{2} + C$ $\sqrt{2}$. $x^{2} + C$ 3. $2x^{2} + C$ 4. $\frac{x^{2}}{2} + C$
48	Порядок дифференциального уравнения $y''' = x^2 + 2x - 1$	 первый второй третий нулевой
Math. his hor	Частному решению линейного неоднородного дифференциального уравнения $y'' + 2y' - 15y = x - 3$ по виду его правой части соответствует функция	1. $y = Ae^{3x} + Be^{-5x}$ 2. $y = e^{3x}(Ax + B)$ 3. $y = Ax^2 + Bx$ $\sqrt{4}$. $y = Ax + B$

50	Частному решению линейного неоднородного дифференциального уравнения $y'' + 2y' - 15y = x^2 + 1$ по виду его правой части соответствует функция	1. $y = Ae^{3x} + Be^{-5x}$ 2. $y = e^{3x}(Ax + B)$ $y = Ax^2 + Bx + C$ 4. $y = Ax + B$
51	Общим решением линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами $y''-49y=0$ является	1. $y = C_1 e^{-49x} + C_2 e^{49x}$ \vee 2. $y = C_1 e^{-7x} + C_2 e^{7x}$ 3. $y = C_1 + C_2 e^{7x}$ 4. $y = C_1 e^{7x} + x C_2 e^{7x}$
	6. Рядь	I
52	Суммой первых трех членов ряда $\sum_{n=1}^{\infty} \frac{2}{n+1}$ является	1. $1\frac{1}{6}$ > 2. $2\frac{1}{6}$ 3. $\frac{1}{6}$ 4. $2\frac{1}{3}$
53 53 50 50 50 50 50 50 50 50 50 50 50 50 50	Общий член последовательности $1, \frac{4}{\sqrt{2}}, \frac{9}{\sqrt{3}}, \frac{16}{\sqrt{4}}, \dots$ имеет вид	1. $a_n = (-1)^{n+1} \frac{n^2}{\sqrt{n}}$ 2. $a_n = (-1)^n \frac{n^2}{\sqrt{n}}$ $\sqrt{3}$. $a_n = \frac{n^2}{\sqrt{n}}$ 4. $a_n = \frac{2n^2}{\sqrt{n}}$
	Oli dires	

	54	Суммой первых трех членов ряда $\sum_{n=1}^{\infty} \frac{1}{3n+1}$ является	1. $\frac{10}{21}$ 2. $\frac{138}{140}$ 3. $\frac{1}{21}$ \checkmark 4. $\frac{69}{140}$
	55	Третьим элементом ряда $\sum_{n=1}^{\infty} \frac{2n}{1+3n}$ является	1. $\frac{6}{5}$ 2. $\frac{1}{10}$ 3. $\frac{3}{10}$ \checkmark 4. $\frac{3}{5}$
	56	Радиус сходимости степенного ряда $\sum_{n=1}^{\infty} a_n x^n$ равен 30. Тогда интервал сходимости имеет вид	115;15 × 230;30 315;0 4. 0;15
hath.his	Stoke Aubsa	OCHURA POCOSOC 16 In Chairs Chairs Chairs	