Лабораторная работа № 7 Динамическая балансировка вращающихся масс ротора

Цель работы: научить студента экспериментальным путем проводить динамическую балансировку вращающихся масс при неизвестном расположении неуравновешенных масс; определять величину статического момента неуравновешенной массы; рассчитывать массу противовеса и место его постановки.

Приборы и принадлежности: станок типа ТММ-1м, набор грузов, бланк-форма.

7.1 Основные сведения из теории уравновешивания вращающихся масс

В движении массы звеньев механизмов развивают силы инерции, изменяющиеся как по величине, так и по направлению. Для устранения вредного влияния сил инерции на работу механизма их уравновешивают.

Механизм считается динамически уравновешенным, если массы звеньев распределены таким образом, при котором их силы инерции не вызывают динамических реакций в опорах механизма.

На практике, при уравновешивании вращающихся масс вокруг своей оси, решаются две задачи: уравновешивание масс, расположенных как угодно в пространстве.

При уравновешивании масс, расположенных в одной плоскости, достаточно выполнить условие:

$$\sum P_u = 0, \tag{7.1}$$

или

$$P_{\nu} = 0, \tag{7.2}$$

то есть главный вектор сил инерции должен быть равен 0. В этом случае масса противовеса устанавливается в плоскости вращения неуравновешенных масс.

Условием уравновешенности вращающихся масс, расположенных как угодно в пространстве, являются условие (7.2) и дополнительно

$$M_{11}=0,$$
 (7.3)

то есть массы будут динамически уравновешены, если главный вектор сил инерции и главный вектор момента от сил инерции будут равны нулю.

В этом случае необходимо устанавливать минимум два противовеса, которые закрепляются в двух специально выбранных плоскостях, называемых плоскостями уравновешивания.

Все эти задачи разрешимы расчетным путем, если известны величины масс, положение их центров тяжести и расстояние центров тяжести от оси вращения.

практике чаще встречаются случаи, когда величины неуравновешенных вращающихся масс, а так же ИХ координаты следовательно, путем неизвестны, определить расчетным

противовесов и место их постановки невозможно. Как пример, возьмем ротор электродвигателя или турбины. Вследствие симметричности их силы инерции должны быть уравновешены и теоретически центры тяжести дисков ротора и самого вала должны совпадать с осью вращения.

Однако при изготовлении дисков и монтаже ротора могут быть допущены неточности, и ротор становится неуравновешенным. В этом случае уравновешенность определяют экспериментальным путем при помощи специальных балансировочных машин.

7.2 Балансировочный станок системы Б.В. Шитикова

Ниже на рисунке 7.1 представлена принципиальная схема балансировочного станка системы Б.В. Шитикова.

На массивной плите 1 (стойка) установлена жесткая рама 2, связанная с плитой шинорамами 3, ось которых располагается горизонтально и перпендикулярно оси балансируемого ротора 4.

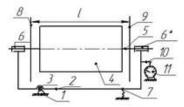


Рисунок 7.1 – Схема балансировочного станка.

Ротор 4 установлен в подшипниках 6 жесткой рамы 2, которая поддерживается пружиной 7, связанной жестко с плитой 1 (в установке ТММ-1м роль пружины выполняет стержень круглого сечения).

Неуравновешенные массы ротора можно заменить двумя массами, расположенными в двух произвольно выбранных плоскостях, перпендикулярных оси ротора. Эти плоскости называют плоскостями уравновешивания.

В установке ТММ-1м эти плоскости изготовлены в виде дисков 8 и 9, в которых имеются прорези для установки дополнительных грузов и противовесов. Расстояние от оси 5 ротора 4 отсчитывается по шкалам, установленным против прорезей диска, с ценой деления 1мм. Угол поворота дисков 8 и 9 относительно ротора отсчитывается по шкале в градусах. Сами диски закрепляются на оси ротора стопорами. Разгон ротора производится электродвигателем.

Ротор 4 устанавливается на раме 2,таким образом, чтобы одна из плоскостей уравновешивания (например, диск 8) проходила бы через ось 3 вращения рамы. Это делается с целью, чтобы сила инерции приведенной массы ротора к диску 8 не вызывала вертикальных колебаний рамы и уравновешивалась бы реакцией в шарнирах 3.

Приведенная масса ротора к диску 9 при вращении ротора будет развивать силу инерции, вертикальная составляющая которой будет вызывать вертикальные колебания рамы 2, которые через упор 10, жестко связанный с рамой, фиксируются индикатором 11.

Горизонтальная составляющая силы инерции уравновешивается реакциями в шарнирах 6.

В основу динамической балансировки ротора на станке ТММ-1м положена пропорциональность амплитуды А колебания рамы статическому моменту mr неуравновешенной массы, т.е.

$$A = \mu(m \cdot r), \tag{7.4}$$

где А – амплитуда колебания рамы, мм;

μ – коэффициент пропорциональности;

т – неуравновешенная масса, г;

r – расстояние от неуравновешенной массы до оси вращения, мм.

7.3 Теоретические основы балансировки ротора на станке ТММ-1м

Пусть неуравновешенная масса m_1 приведенная к диску 9, находится на расстоянии r_1 от оси вращения ротора, составляющим с линией отсчета х-х угол α (рисунок 7.2 a).

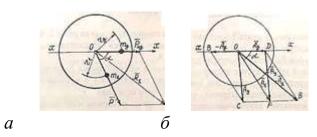


Рисунок 7.2 – К определению α и A_9 .

Разгоним ротор до оборотов, при которых рамы 2 будет больше частоты колебаний возмущающей силы P_{u1} , вектор, который направлен по радиусу r_1 . Отключив двигатель, предоставим ротор свободному выбегу. Снижая обороты, ротор дойдет до резонансной частоты, при которой будет наблюдаться максимальная амплитуда A_1 колебания рамы от собственной неуравновешенности ротора. Зафиксируем ее по индикатору 2 (рисунок 7.1).

На основании (7.4) будем иметь:

$$A_1 = \mu(m_1 \, r_1) \tag{7.5}$$

где А₁ – амплитуда колебания рамы, мм;

 $m_1 r_1$ — статический момент неуравновешенной массы m_1 в плоскости 9, кг \times мм.

Так как P_{u1} - величина неизвестная, то вместо нее от точки 0, (рисунок 7.2 б), отложим в произвольном масштабе величину A_1 параллельно вектору P_{u1} .

Поместив на линии x - x на расстоянии $r_{\rm d}$ от оси вращения ротора добавочную массу $m_{\rm d}$ и, разогнав ротор, в момент выбега измерим амплитуду колебания A_2 , которая является результирующей от воздействия сил инерции собственной неуравновешенности ротора и силы

инерции добавочной массы та

По (7.4) имеем:

$$A_2 = \mu R_{u2}$$
. (7.6)

На амплитудах A_1 и A_2 , как на векторах, достроим параллелограмм (рисунок 7.2 б) ODEF. В этом параллелограмме неизвестными являются амплитуда A_0 от добавочной массы m_0 и угол α , одной из диагоналей является A_2 .

Развернув диск 9 (рисунок 7.1) на 180° и, не меняя положение m_{δ} относительно оси ротора, разгоним его и в момент выбега измерим амплитуду A_3 колебания ротора от сил инерции его неуравновешенной и добавочной массы m_{δ} На рисунке 7.2 б построен параллелограмм ВОГС по амплитудам A_1 и A_3 , как векторам.

Совместим параллелограмм BOFC с параллелограммом ODEF равными сторонами A_{δ} u A_{I} . Диагоналями этого параллелограмма являются амплитуды A_{2} и A_{3} .

Известно

$$2\mathbf{A}_{1}^{2} + 2A_{1}^{2} = \mathbf{A}_{2}^{2} + \mathbf{A}_{3}^{2} \qquad (7.7)$$

В уравнении (7.7) неизвестна амплитуда A_{θ} колебаний от добавочной массы.

Определим ее из (7.7)

$$A_{\text{M}} = \sqrt{\frac{A_2^2 + A_3^2 - A_1^2}{2}} \tag{7.8}$$

Определив A_{θ} от силы инерции добавочного груза, можем записать:

$$A_{\pi} = \mu(m_{\pi}r_{\pi}), \tag{7.9}$$

Откуда

$$\mu = \frac{A_{\pi}}{m_{\pi}r_{\pi}},\tag{7.10}$$

где $m_{_{\rm J}}r_{_{\rm J}}$ – статический момент от $m_{_{\rm J}}$.

Определив коэффициент пропорциональности μ из (7.5), находим статический момент $m_1 r_1$ неуравновешенной массы ротора

$$m_1 r_1 = \frac{A_1}{\mu} \tag{7.11}$$

Система будет уравновешена, если соблюдается условие

$$m_1 r_1 = m_n r_n,$$
 (7.12)

то есть, статический момент неуравновешенной массы равен статическому моменту массы противовеса.

Задавшись массой m_n противовеса из 7.12 определяем r_n

$$r_n = \frac{m_1 r_1}{m_n}. (7.13)$$

Для определения направления радиус-противовеса r_n (угла а) воспользуемся рисунком 7.2 б. Из косоугольного треугольника ODF по теореме косинусов имеем:

$$A_3^2 = A_1^2 + A_{\pi}^2 - 2A_1 \times A_{\pi} \cos \alpha, \qquad (7.14)$$

откуда

$$\cos\alpha = \frac{A_1^2 + A_{\pi}^2 - A_3^2}{2A_1 A_{\pi}}. (7.15)$$

Заметим, что противовес должен быть расположен на одном из диаметров, определяемых углами: α ; $-\alpha$; 180° – α ; 180° + α .

- 7.4 Основные параметры балансировочного станка ТММ-1м
- 1. Собственная частота колебаний рамы 6-7 Гц.
- 2. Точность измерения амплитуды -0.01 мм.
- 3. Цена деления угловой шкалы дисков -2° .
- 4. Цена деления радиальной шкалы дисков 1 мм.
- 5. Macca добавочных грузов 10, 20, 30, 40 г.
- 6. Электродвигатель: тип МУН 1000/80; мощность 80Вт; напряжение питания 220 В.
 - 7. Габариты станка $-600 \times 455 \times 440$ мм.
 - 8. Масса станка 56 кг.
 - 1.5 Порядок проведения работы
 - 1. Составляется схема установки.
- 2. Рама 2 (рисунок 7.1) устанавливается по уровню в горизонтальное положение.
 - 3. Диск 9 по угловой шкале устанавливается на нуль.
- 4. Указатель точного отсчета индикатора 2 устанавливается на нуль и записывается показание грубой шкалы индикатора.
- 5. Задаются массой m_n добавочного груза и радиусом r_n его установки. Закрепляют груз в прорези диска 9, замеряют три раза амплитуду A_2 и вычисляют ее среднее значение.
- 6. Освобождают стопора крепления на валу диска 9 и, не изменяя положения m_0 , поворачивают на 180° . Закрепив диск и разогнав ротор при резонансе три раза измеряется амплитуда A_3 и вычисляется ее среднее значение.
- 7. По формулам (7.8), (7.10), (7.11), (7.13) и (7.15) определяем $A_{\!\scriptscriptstyle \rm I}$; μ ; $m_1 r_1$; r_n и α .
- 8. Противовес m_n устанавливается на расстоянии r_n под углом α четыре раза до тех пор, пока остаточная амплитуда A_k сбалансированного ротора будет минимальной.
- 9. По минимальной амплитуде A_{κ} определяют относительную величину остаточной неуравновешенности

$$\delta A = \frac{A_K}{A_1}.$$
 (7.16)

Уравновешивание в плоскости 8 не производится.

Отчет по лабораторной работе оформляется согласно журналу по лабораторным работам.

ОТЧЕТ

о лабораторной работе №7 «Динамическая балансировка вращающихся масс ротора»

Содержание отчета:

- 1. Название и цель работы.
- 2. Ответить на контрольные вопросы и представить в письменном виде.

Контрольные вопросы

- 1. Когда производится балансировка вращающихся масс?
- 2. Можно ли расчетным путем уравновесить вращающиеся массы при неизвестном их расположении?
- 3. Каковы причины неуравновешенности масс, вращающихся вокруг одной оси при их симметричном расположении вокруг нее?
- 4. Когда массы, вращающиеся вокруг одной оси, считаются полностью уравновешенными?
 - 5. Чем отличается статическая балансировка от динамической?
- 6. Какие вращающиеся массы подвергают только статической балансировке?