Министерство сельского хозяйства Российской Федерации ФГБОУ ВПО «Кубанский государственный аграрный университет»

ТЕОРИЯ МЕХАНИЗМОВ И МАШИН: КУРСОВОЕ ПРОЕКТИРОВАНИЕ

для бакалавров по направлениям подготовки: 110800 «Агроинженерия»; 190600 «Эксплуатация транспортнотехнологических машин и комплексов»

и специалистов по направлению подготовки: 190109 «Наземные транспортно-технологические средства»

Краснодар 2013

УДК 531.8 (075.8) ББК 34.41

T33

Рецензент:

доктор технических наук Ирина Александровна Петунина

Авторский коллектив:

В.Н. Плешаков, В.С. Курасов, Е.Е. Самурганов, Р.Н. Букаткин

ТЗЗ Теория механизмов и машин: курсовое проектирование: учебнометодическое пособие / В.Н. Плешаков [и др.]. – Краснодар: КубГАУ, 2013. – 99 с.

В учебно-методическом пособии излагаются методы проектирования кинематических схем машин; освещены вопросы проектирования наиболее распространенных в технике типовых механизмов; даны элементы сравнительного анализа кинематических и динамических свойств этих механизмов.

Большое значение имеет курс для подготовки инженеров по эксплуатации машин, так как знание видов механизмов и их кинематических и динамических свойств необходимо для понимания принципов работы отдельных механизмов и их взаимодействия в машине.

> УДК 531.8 (075.8) ББК 34.41

© Авторский коллектив, 2013
 © ФГБОУ ВПО «Кубанский государственный аграрный университет», 2013

СОДЕРЖАНИЕ

3

ЛИСТ 1

1 Структурное и кинематическое исследования плоского шарнирно-
рычажного механизма б
1.1 Обозначения и единицы измерения основных параметров
механизмов
1.2 Структурный анализ механизма9
1.3 Построение кинематической схемы механизма и исследование
движения его звеньев11
1.4 Кинематическое исследование механизма графическим методом
с помощью кинематических диаграмм точки В ₅ 14
1.5 Кинематическое исследование механизма графоаналитическим
методом с помощью планов скоростей и ускорений18

ЛИСТ 2

2	2 Кинетостатическое (силовое) исследование механизма	.28
	2.1 Заданные силы	. 30
	2.2 Определение сил инерции и моментов их пар	
	(инерционной нагрузки)	.31
	2.3 Определение реакций в кинематических парах	.36
	2.4 Силовой анализ ведущего звена и определение	
	уравновешивающей силы	.40
	2.5 Определение уравновешивающей силы с помощью вспомогательно	ого
	рычага Н.Е. Жуковского	.42
	2.6 Кинетостатический расчет кривошипно-кулисного механизма	.43

ЛИСТ 3

3 Определение момента инерции маховика механизма	
и его геометрических размеров	56
3.1 Приведение сил и моментов	58
3.2 Приведение масс и моментов инерции	61
3.3 Построение диаграммы приведенных моментов от силы полезного	
сопротивления	76
3.4 Построение диаграммы работ приведенных моментов от сил	
движущих и силы полезного сопротивления	79
3.5 Построение диаграммы приращения кинетической энергии ΔT	
в функции угла φ	80
3.6 Построение диаграммы приведенного момента инерции	
звеньев механизма	81
3.7 Построение диаграммы энергомасс (метод Виттенбауэра)	83
3.8 Определение основных размеров и массы маховика	85
3.9 Пример расчета маховика для шестизвенного рычажного механизма	a
строгального станка	89
Литература	98

Предисловие

Ведущую роль в развитии агропромышленного комплекса играет сельскохозяйственное машиностроение. Насыщенная множеством различных механизмов новая сельскохозяйственная техника обеспечивает нормальные условия для работы механизаторов, качественное выполнение технологических процессов, более надежна в работе, но сложна по конструкции и требует высокой квалификации обслуживающего персонала.

Для производительного использования современной техники в сельскохозяйственном производстве, ее квалифицированной эксплуатации необходим высокий уровень подготовки, выпускники должны обладать глубокими знаниями в области физических процессов, происходящих в машинах, кинематики и динамики, методов анализа и синтеза механизмов, а так же навыками и применении этих методов к исследованию и проектированию кинематических схем различных типов механизмов и машин. Поэтому наряду с изучением теоретического курса теории механизмов и машин в учебных планах предусматривается обязательное выполнение курсового проекта.

Весь представленный материал в методических указаниях составлен на основе реальных механизмов и машин, используемых в современном сельскохозяйственном и машиностроительном производстве.

5

ЛИСТ 1

1 Структурное и кинематическое исследования плоского шарнирно-рычажного механизма

Методы кинематического и динамического исследований механизмов вытекают из их структуры. Поэтому определение структуры механизма (его строения) является одной из первых и важных задач исследования.

Определить структуру механизма – это значит установить его степень подвижности, класс и порядок. Для такого исследования строится кинематическая схема механизма, на которой все звенья и кинематические пары вычерчиваются в виде стандартных условных изображений с указанием размеров, координат осей вращения и других кинематических параметров. Затем вычерчивается структурная схема механизма, отличающаяся от кинематической схемы тем, что все имеющиеся в механизме высшие кинематические пары заменены на кинематические цепи с низшими кинематическими парами пятого класса.

Графическая часть выполняется на листе формата A1 (594×841) мм (ГОСТ 2.301-68 ЕСКД. Форматы)

1. По указанным в задании данным и принятому масштабному коэффициенту длин (расстояний) μ_l вычерчивается схема механизма в 12-ти положениях (A₀ и A_κ – крайние положения).

Положение механизма (рисунок 1.2 примера выполнения курсового проекта), при котором кривошип *OA* перпендикулярен звену 2, а кулисный камень (ползун) 4 принимает крайнее левое положение, принимаем в дальнейших расчетах и построениях за начальное (точки A_0 и B_0). Центр масс звена 2 находится в точке S_2 . Так как массы звеньев 1, 3 и 4 в десятки

раз меньше массы звеньев 2 и 5, то в силовом и динамическом расчетах с достаточной степенью точности ими можно пренебречь.

2. Строятся планы скоростей для 12-ти положений и планы ускорений для 2-х положений (обозначенных в задании) механизма в соответственно принятых масштабных коэффициентах μ_V и μ_a .

3. Для характерной точки исполнительного (выходного) 5-го звена, например точки *B*₅ (поршня, ползуна, долбяка и т.п.), строятся кинематические диаграммы (графики) перемещений, скоростей и ускорений:

а) диаграмма перемещений $s_{B_5} = f(t)$ данной точки B_5 от ее начального положения в функции времени t полного оборота ведущего (входного) звена. Диаграмма строится по отрезкам, определяющим расстояния, пройденные точкой B_5 при построении 12-ти положений механизма;

б) диаграмма скоростей $\upsilon_{B_5} = f(t)$, построенная методом графического дифференцирования (метод хорд) кривой перемещений;

в) диаграмма ускорений $a_{B_5} = f(t)$, построенная методом графического дифференцирования кривой скоростей.

Расположить графики целесообразно один под другим в порядке дифференцирования в левой части листа.

Расчетно-пояснительная записка

Дается перечень основных разделов проекта с указанием номера листа, на котором выполняются соответствующие графические построения:

 лист 1 – структурное и кинематическое исследования плоского шарнирно-рычажного механизма;

 лист 2 – кинетостатическое (силовое) исследование плоского шарнирно-рычажного механизма; 3) лист 3 – определение момента инерции маховика по диаграмме энергомасс (метод Виттенбауэра).

На отдельных листах вычерчивается в произвольном масштабе кинематическая схема механизма и помещаются данные, необходимые для его исследования.

1.1 Обозначения и единицы измерения основных параметров механизмов

- *W* число степеней подвижности механизма;
- р число кинематических пар;
- $l длина (l_{OA} длина звена OA), м;$
- *t* время, с;
- $\overline{\upsilon}$ скорость линейная, м/с;
- $\overline{\upsilon}_{\scriptscriptstyle BA}$ скорость точки *B* относительно точки *A*, м/с;
 - φ угол поворота звена, рад. (град.);
 - ω угловая скорость, с⁻¹;
 - ε угловое ускорение, с⁻²;
 - \overline{a} ускорение линейное, м/с²;
- \overline{a}_{BA} ускорение точки *B* относительно точки *A*, м/c²;
- \overline{a}^n ускорение нормальное, м/с²;
- \overline{a}^{τ} ускорение касательное (тангенциальное), м/с²;
- \overline{a}^r ускорение относительное, м/с²;
- \overline{a}^{κ} ускорение кориолисово, м/с²;
- A работа, Дж, кВт·ч (1 кВт·ч = 3600 кДж);
- *Т* кинетическая энергия, Дж;
- M момент силы, $H \cdot M$;

 $\bar{Q}_{\Pi C}$ – сила полезного сопротивления, H;

 \overline{P}_{μ} – сила инерции, H;

 M_{μ} – момент сил инерции, Н · м;

 \overline{G} – сила тяжести, Н;

т – масса звена, кг;

- \overline{g} ускорение свободного падения, м/с²;
- \overline{R}_{ji} реакция в кинематической паре со стороны звена *j* на звено *i*, H;
- J_{S} момент инерции звена относительно оси, проходящей через центр масс звена (точка *S*) и нормальной к плоскости движения, кг · м²;

 \overline{P}_{vn} – уравновешивающая сила, H;

 δ – коэффициент неравномерности хода машины.

1.2 Структурный анализ механизма

Задача структурного анализа стоит в том, чтобы установить:

а) число степеней подвижности W механизма, т.е. число его ведущих звеньев;

б) число структурных групп (групп Ассура), входящих в состав механизма, их класс, порядок, вид;

в) класс механизма согласно структурной формуле образования механизма.

Структурный анализ механизма ведется путем последовательного отсоединения групп Ассура, начиная с группы, наиболее удаленной от ведущего звена. Класс механизма определяется по наивысшему классу группы, входящей в состав ведомой части механизма. Класс и порядок каждой структурной группы и механизма в целом рекомендуется определять по классификации, предложенной академиком И.И. Артоболевским.

Согласно разработанной теории Л.В. Ассура, любой механизм может быть образован путем последовательного присоединения к ведущему звену и стойке кинематических цепей (групп Ассура) с нулевой степенью подвижности относительно тех звеньев, к которым группа Ассура присоединяется, т.е.

$$W = 3 \cdot n' - 2 \cdot p_5 = 0$$

Из этой формулы следует, что в группе Ассура число звеньев четное, а число пар кратное трем; кинематические пары 4-го класса обязаны быть заменены на кинематические цепи с парами 5-го класса.

Структурный анализ (рисунок 1.1) механизма проводим путем расчленения его схемы (рисунок 1.2) на группы Ассура, начиная с наиболее удаленной по кинематической цепи от ведущего звена.

II класса, II порядка, 4 вида II класса, II порядка, 3 вида I класса Рисунок 1.1 – Структурный анализ механизма

Определим степень подвижности механизма по формуле П.Л. Чебышева:

$$W = 3n' - 2p_5 - p_4,$$

где n' – число подвижных звеньев механизма (n' = 5);

 p_5 – число кинематических пар 5-го класса ($p_5 = 7$);

 p_4 – число кинематических пар 4-го класса ($p_4 = 0$).

$$W = 3 \cdot 5 - 2 \cdot 7 - 0 = 1$$
.

Полученный результат (W = 1) свидетельствует о том, что в механизме должно быть одно ведущее звено.

Последовательно отсоединяем сначала звенья 4 и 5 (группа Ассура II класса, II порядка, 4 вида), далее звенья 2 и 3 (группа Ассура II класса, II порядка, 3 вида). Остается механизм I класса, т.е. ведущее звено 1 со стой-кой 6 (рисунок 1.1).

Записываем структурную формулу образования механизма:

$$I(1,6) \rightarrow II(2,3) \rightarrow II(4,5).$$

Определяем класс механизма: в целом механизм ІІ -го класса.

1.3 Построение кинематической схемы механизма и исследование движения его звеньев

На первом листе, по возможности в центре его, производится построение совмещенного плана механизма с низшими кинематическими парами в 12-ти положениях равномерно расположенных по ходу кривошипа (рисунок 1.2).

Масштабный коэффициент длин μ_l подсчитывается как отношение длины какого-либо звена механизма в метрах (обычно кривошипа) к отрезку на чертеже, изображающему эту длину в миллиметрах.

Рисунок 1.2 – Кинематическая схема механизма (уменьшена в 1,25 раза) (A_0 и A_{κ} – крайние положения)

$$\mu_l = \frac{l_{OA}}{\left(\overline{OA}\right)}$$

где l_{OA} – длина кривошипа, м (по заданию $l_{OA} = 0,1$ м);

 $\left(\overline{OA}\right)$ – отрезок произвольной длины, мм.

<u>Исходные данные к расчету (согласно заданию)</u>: $l_{OA} = 0,10 \text{ м}; \ l_{AS_2} = 0,08 \text{ м}; \ a = 0,26 \text{ м}; \ b = 0,16 \text{ м}; \ n = 75 \text{ об/мин};$ $Q_{\Pi C} = 1700 \text{ H}; \ G_5 = 160 \text{ H}; \ G_2 = 110 \text{ H}; \ J_{S_2} = 0,50 \text{ кг} \cdot \text{м}^2; \ \delta = 0,050.$

Приняв на чертеже отрезок (\overline{OA}) , равный 50 мм, находим

$$\mu_l = \frac{0,10}{50} = 0,002 \ \frac{M}{MM}.$$

Переводим значения остальных заданных размеров в масштаб построения путем отношения заданного размера в метрах к выбранному масштабному коэффициенту μ_l .

OA	AS_2	а	b							
длины звеньев, в метрах (по заданию)										
0,10	0,08	0,26	0,16							
длины звеньев на чертеже, в миллиметрах										
50	40	130	80							

В масштабе μ_l вычерчиваем схему механизма в двенадцати положениях кривошипа (точки *A*), начиная с начального (точка *A*₀).

В соответствии с принятым масштабным коэффициентом размещаются на чертеже неподвижные точки механизма с заданными координатами. Затем с помощью метода засечек и других геометрических построений, начиная от ведущего звена, определяются положения ведомых звеньев. План механизма в нулевом положении вычерчивается контурной линией, толщиной не менее 0,8 мм, а для остальных положений проводятся только оси звеньев в виде тонких линий. В качестве нулевого положения, от которого начинается отсчет движения, принимается одно из крайних положений, занимаемое исполнительным (выходным) звеном механизма.

Затем по 12-ти равноотстоящим положениям ведущего звена строятся соответствующие им положения всех остальных звеньев механизма (рисунок 1.2). На звене 2 в соответствии с данными обозначается центр масс звена (точкой S_2).

1.4 Кинематическое исследование механизма графическим методом с помощью кинематических диаграмм точки *B*₅

Диаграмма перемещений $s_{B_5} = f(t)$ (рисунок 1.3). Для построения диаграммы перемещений точки B_5 звена 5 откладываем по оси абсцисс отрезок L, равный 180 мм, изображающий период T одного оборота кривошипа (ось t), и делим его на 12 равных частей. Из точек 1, 2, 3, ..., 11 оси t диаграммы $s_{B_5} = f(t)$ откладываем ординаты 1-1', 2-2', 3-3', ..., 11-11', соответствующие расстоянию на схеме механизма от начального положения точки B (B_0) до всех остальных ($B_1, B_2, B_3, ..., B_{11}$) в выбранном масштабе μ_s . Точки 0, 1', 2', ... 12 соединяем плавной кривой (или, как показано в примере, прямыми 0-1', 1'-2', 2'-3', ..., 11'-12).

$$\mu_{S} = \frac{\left(\overline{S_{B_{5}}}\right)_{\max}}{\left(\overline{y}\right)_{\max}} \cdot \mu_{l}.$$
$$\mu_{S} = \frac{175}{87,5} \cdot 0,002 = 0,004 \frac{M}{MN}$$

Рисунок 1.3 – Кинематические диаграммы перемещений, скоростей и ускорений точки *B*₅ (уменьшены в 2 раза)

Масштаб отрезков по оси абсцисс определится следующим образом. Так как период одного оборота кривошипа:

$$T = \frac{60}{n} = \frac{2\pi}{\omega} \ [c],$$

то время одного оборота (в секундах) с учетом масштабного коэффициента μ_t будет

$$T = \mu_t L [c].$$

Тогда

$$\mu_t = \frac{60}{nL} = \frac{2\pi}{\omega L} \left[\frac{c}{MM} \right],$$

где n – обороты кривошипа в минуту, мин⁻¹.

Так как на ординатах откладываем расстояния в мм, измеренные на планах механизма, то удобно масштаб диаграммы по оси ординат принять равным масштабному коэффициенту длин:

$$\mu_{S} = \mu_{l} \left[\frac{M}{MM} \right].$$

Для нашего примера

$$\mu_t = \frac{60}{n \cdot L} = \frac{60}{75 \cdot 180} = 0,0044 \ \frac{c}{MM}.$$

Таблица 1.1 – Перемещения точки *B*₅ исполнительного (выходного) звена

	Положения													
Перемещение				Рабо	очий	ход				X	Холостой ход			
	0	1	2	3	4	5	6	7	К	8	9	10	11	
S_{B_5} в мм в масштабе μ_l плана механизма	0	11,2	35,5	64,6	95,0	125,1	152,4	171,8	175,0	171,2	135,7	70,7	16,9	

Продолжение таблицы 1.1

						Пол	юже	ния					
Перемещение				Рабо	очий	ход				Холостой ход			
	0	1	2	3	4	5	6	7	К	8	9	10	11
$S_{_{B_{5}}},$ м	0	0,0224	0,0710	0,1292	0,1900	0,2502	0,3048	0,3436	0,3500	0,3424	0,2714	0,1414	0,0338
S_{B_5} в мм в масштабе μ_s диаграммы перемещений	0	5,60	17,75	32,30	47,50	62,55	76,20	85,90	87,50	85,60	67,85	35,35	8,45

Диаграмма скоростей $\upsilon_{B_5} = f(t)$ (рисунок 1.3) строится графическим дифференцированием диаграммы перемещений $s_{B_5} = f(t)$ по методу хорд. Он заключается в следующем. Криволинейные участки диаграммы $s_{B_5} = f(t)$ заменяем прямыми 0-1', 1'-2', 2'-3', ..., 11'-12. Под диаграммой перемещений проводим прямоугольные оси υ_{B_5} и t. На оси t выбираем полюсное расстояние H_1 произвольной длины (принимаем $H_1 = 30$ мм). Из точки O_1 (начала полюсного расстояния) проводим наклонные прямые параллельно хордам 0-1', 1'-2', 2'-3', ..., 11'-12 диаграммы $s_{B_5} = f(t)$ до оси υ_{B_5} и далее параллельно оси t до пересечения с перпендикулярами, восстановленными из середины интервалов 0-1, 1-2, 2-3, ..., 11-12 оси t диаграммы $\upsilon_{B_5} = f(t)$. Точки пересечения соединяем плавной кривой.

Масштабный коэффициент диаграммы скоростей $\upsilon_{B_5} = f(t)$ вычисляем по формуле:

$$\mu_V = \frac{\mu_S}{\mu_t \cdot H_1}$$

где H_1 – полюсное расстояние (отрезок произвольной длины), мм.

$$\mu_V = \frac{0,004}{0,0044 \cdot 30} = 0,03 \ \frac{\text{M/c}}{\text{MM}}.$$

Диаграмма ускорений $a_{B_5} = f(t)$ (рисунок 1.3) строится графическим дифференцированием диаграммы скоростей по методу хорд. Все построения аналогичны ранее описанным при графическом дифференцировании диаграммы перемещений.

Масштабный коэффициент диаграммы ускорений $a_{B_5} = f(t)$ вычисляем по формуле:

$$\mu_a = \frac{\mu_V}{\mu_t \cdot H_2}.$$

где H_2 – полюсное расстояние (отрезок произвольной длины), мм.

$$\mu_a = \frac{0.03}{0.0044 \cdot 30} = 0.225 \frac{\text{m/c}^2}{\text{mm}}.$$

1.5 Кинематическое исследование механизма графоаналитическим методом с помощью планов скоростей и ускорений

Подробное описание графоаналитического расчета и всех построений ведется только при построении одного плана скоростей и одного плана ускорений. Планы скоростей и ускорений для других положений механизма строятся аналогично, а результаты расчетов заносятся в таблицы 1.2, 1.3, 1.4, 1.5, 1.6.

На одном из положений механизма указываются круговыми стрелками направления угловой скорости ω_2 и углового ускорения ε_2 .

19

Построение планов скоростей механизма

Определяем скорость точки А кривошипа ОА.

$$\upsilon_A = \omega_1 \cdot l_{OA},$$

где $\omega_1 = \frac{\pi n}{30} = \frac{3,14 \cdot 75}{30} = 7,85 \text{ c}^{-1}.$

$$\upsilon_{A} = 7,85 \cdot 0,1 = 0,785 \text{ M/c}.$$

Определяем масштабный коэффициент планов скоростей по формуле:

$$\mu_V = \frac{\upsilon_A}{\left(\overline{P_V a}\right)},$$

где $\left(\overline{P_{V}a}\right)$ – отрезок произвольной длины, мм.

$$\mu_{V} = \frac{0,785}{78,5} = 0,01 \frac{\text{M/c}}{\text{MM}}.$$

Из полюса P_v откладываем отрезок $(\overline{P_v a})$ перпендикулярно звену *OA* в направлении угловой скорости ω_1 (рисунок 1.4). Скорости точек звеньев механизма определим по теореме о сложении скоростей в плоском движении.

Скорость точки С2, определим, решая графически систему уравнений:

$$\begin{cases} \overline{\nu}_{C_2} = \overline{\nu}_A + \overline{\nu}_{C_2A}; \\ \overline{\perp OA} \quad \overline{\perp BC} \\ \overline{\nu}_{C_2} = \overline{\nu}_{C_6} + \overline{\nu}_{C_2C_6}. \\ = 0 \quad ||BC \end{cases}$$

Скорость точки B_2 определяется уравнением:

$$\overline{U}_{B_2} = \overline{U}_A + \overline{U}_{B_2A} \cdot \frac{1}{\Box O_1A} + \frac{1}{\Box BC} \cdot \frac{1}{\Box BC}$$

Относительную скорость υ_{B_2A} определим по теореме о картине относительных скоростей из пропорции:

$$\frac{\left(\overline{ac_2}\right)}{\left(\overline{AC}\right)} = \frac{\left(\overline{ab_2}\right)_x}{\left(\overline{AB}\right)} \implies \left(\overline{ab_2}\right)_x = \left(\overline{ac_2}\right) \cdot \frac{\left(\overline{AB}\right)}{\left(\overline{AC}\right)},$$

где $(\overline{ab_2})_x$, $(\overline{ac_2})$ – длины отрезков на плане скоростей, мм; $(\overline{AC}), (\overline{AB})$ – длины отрезков на плане механизма, мм.

Тогда скорость точки B_2 определим, соединив полюс P_V с точкой b_2 на плане скоростей

$$\nu_{B_2} = \left(\overline{P_V b_2}\right) \cdot \mu_V.$$

Скорость точки В₅ определим, решая графически уравнение:

$$\frac{\overline{U}_{B_5}}{\frac{\|XX}{\|XX}} = \frac{\overline{U}_{B_2}}{\frac{\|B_2}{\|BC}} + \frac{\overline{U}_{B_5B_2}}{\frac{\|BC}{\|BC}}.$$

Скорость точки S₂ определим по теореме о картине относительных скоростей из пропорции:

$$\frac{\left(\overline{ac_2}\right)}{\left(\overline{AC}\right)} = \frac{\left(\overline{as_2}\right)_x}{\left(\overline{AS_2}\right)} \implies \left(\overline{as_2}\right)_x = \left(\overline{ac_2}\right) \cdot \frac{\left(\overline{AS_2}\right)}{\left(\overline{AC}\right)}.$$

Тогда скорость точки S_2 определим, соединив полюс P_V с точкой s_2 на плане скоростей:

$$\upsilon_{S_2} = \left(\overline{P_V S_2}\right) \cdot \mu_V$$

Определим угловые скорости 2-го звена по формуле:

$$\omega_2 = \frac{\nu_{AC_2}}{l_{AC}} = \frac{\left(\overline{aC_2}\right) \cdot \mu_V}{\left(\overline{AC}\right) \cdot \mu_l}.$$

Рисунок 1.4 – Планы скоростей (уменьшены в 2 раза)

Построение планов ускорений механизма

Определяем ускорение точки А кривошипа ОА.

$$a_A = a_A^n = \omega_1^2 \cdot l_{OA}.$$

 $a_A = 7,85^2 \cdot 0,1 = 6,16 \text{ m/c}^2.$

Определяем масштабный коэффициент плана ускорений:

$$\mu_a = \frac{a_A}{\left(\overline{\pi a}\right)},$$

где $(\overline{\pi a})$ – отрезок произвольной длины, мм.

$$\mu_a = \frac{6,16}{61,6} = 0,1 \frac{\text{M/c}^2}{\text{MM}}$$

Из полюса π откладываем отрезок $(\overline{\pi a})$ параллельно звену *OA*, направленный к точке *O* (рисунок 1.5). Ускорения точек звеньев механизма определим по теореме о сложении ускорений в плоском движении.

Ускорение точки С₂ определяется уравнением:

$$\overline{a}_{C_2} = \overline{a}_A + \overline{a}_{C_2A}^n + \overline{a}_{C_2A}^\tau \cdot \frac{\overline{a}_{C_2A}^\tau}{\Box BC} \cdot \overline{a}_{C_2A}^\tau \cdot a_{C_2A}^n \cdot \frac{\overline{a}_{C_2A}^\tau}{\Box BC} \cdot \mu_l$$
$$a_{C_2A}^n = \omega_2^2 \cdot l_{AC} = \omega_2^2 \cdot (\overline{AC}) \cdot \mu_l$$
$$\left(\overline{an_2}\right) = \frac{a_{C_2A}^n}{\mu_a} \cdot \frac{\overline{a}_{C_2A}^n}{\mu_a} \cdot \frac{\overline{a}_{C_2A}^r}{\mu_a} \cdot \frac{\overline{a}_{C_2A}^r}{\mu$$

С другой стороны a_{C_2} определяется по теореме Кориолиса:

$$\overline{a}_{C_2} = \overline{a}_{C_6} + \underbrace{\overline{a}_{C_2C_6}^{\kappa}}_{=0} + \underbrace{\overline{a}_{C_2C_6}^{r}}_{\parallel BC} \cdot a_{C_2C_6}^{\kappa} \cdot a_{C_2C_6}^{\kappa} + \underbrace{\overline{a}_{C_2C_6}^{r}}_{\parallel BC} \cdot \mu_V \cdot 1$$

где $\left(\overline{c_2 c_6}\right)$ – длина отрезка на плане скоростей, мм.

Направление вектора кориолисова ускорения $\overline{a}_{C_2C_6}^{\kappa}$ определяем по правилу Н.Е. Жуковского. Для этого вектор относительной скорости $\overline{v}_{C_2C_6}$, который изображен на плане скоростей отрезком $(\overline{c_2c_6})$, проецируем в плоскость, перпендикулярную оси вращения (т.е. в плоскость чертежа, в которой он уже расположен). Вектор скорости $\overline{v}_{\underline{c}_2C_6}$ направлен к той точке, которая первая стоит в обозначении (к точке c_2). Остается повернуть этот вектор $(\overline{v}_{C_2C_6})$ по направлению угловой скорости ω_2 на 90°.

$$\left(\overline{\pi\kappa_3}\right) = \frac{a_{C_2C_6}^{\kappa}}{\mu_a}.$$

Ускорение точки B_2 определяется уравнением:

$$\overline{a}_{B_2} = \overline{a}_A + \overline{a}_{B_2A}.$$

Относительное ускорение *a*_{*B*₂*A*} определим по теореме о картине относительных ускорений из пропорции:

$$\frac{\left(\overline{ac_2}\right)}{\left(\overline{AC}\right)} = \frac{\left(\overline{ab_2}\right)_x}{\left(\overline{AB}\right)} \implies \left(\overline{ab_2}\right)_x = \left(\overline{ac_2}\right) \cdot \frac{\left(\overline{AB}\right)}{\left(\overline{AC}\right)},$$

где $(\overline{ab_2})_x$, $(\overline{ac_2})$ – длины отрезков на плане ускорений, мм; (\overline{AC}) , (\overline{AB}) – длины отрезков на плане механизма, мм.

Тогда ускорение точки B_2 определим, соединив полюс π с точкой b_2 на плане ускорений:

$$a_{B_2} = \left(\overline{\pi b_2}\right) \cdot \mu_a.$$

Ускорение точки В₅ определим, решая графически уравнение:

$$\overline{a}_{B_5} = \overline{a}_{B_2} + \overline{a}_{B_5B_2}^{\kappa} + \overline{a}_{B_5B_2}^{r}.$$
$$\overline{\pm BC} = 2 \cdot \omega_2 \cdot \upsilon_{B_5B_2} \cdot \sin 90^\circ;$$

$$a_{B_5B_2}^{\kappa}=2\cdot\omega_2\cdot\left(\overline{b_5b_2}\right)\cdot\mu_V\cdot\mathbf{1},$$

где $\left(\overline{b_5 b_2}\right)$ – длина отрезка на плане скоростей, мм.

Для определения направления вектора кориолисова ускорения $\overline{a}_{B_5B_2}^{\kappa}$ вектор относительной скорости $\overline{\nu}_{\underline{B}_5B_2}$, изображенный отрезком $(\overline{b_5b_2})$ на плане скоростей и направленный к точке b_5 , поворачиваем по направлению угловой скорости ω_2 на 90°.

$$\left(\overline{b_2\kappa_4}\right) = \frac{a_{B_5B_2}^{\kappa}}{\mu_a}.$$

Ускорение точки S₂ определим по теореме о картине относительных ускорений из пропорции:

$$\frac{\left(\overline{ac_2}\right)}{\left(\overline{AC}\right)} = \frac{\left(\overline{as_2}\right)_x}{\left(\overline{AS_2}\right)} \implies \left(\overline{as_2}\right)_x = \left(\overline{ac_2}\right) \cdot \frac{\left(\overline{AS_2}\right)}{\left(\overline{AC}\right)},$$

Тогда ускорение точки S_2 определим, соединив полюс π с точкой s_2 на плане ускорений:

$$a_{s_2} = \left(\overline{\pi s_2}\right) \cdot \mu_a.$$

Определим угловые ускорения 2-го звена по формуле:

$$\varepsilon_2 = \frac{a_{C_2A}^{\tau}}{l_{AC}} = \frac{\left(\overline{n_2 c_2}\right) \cdot \mu_a}{\left(\overline{AC}\right) \cdot \mu_l}.$$

Таблица 1.2 – Параметры общие для всех положений механизма

n	l_{OA}	ω_{l}	\mathcal{U}_A	a_{A}	μ_l	$\mu_{_V}$	μ_{a}
<u>об</u> мин	М	c^{-1}	м/с	м/c ²	M MM	<u>м/с</u> мм	$\frac{M/c^2}{MM}$
75	0,10	7,85	0,785	6,16	0,002	0,01	0,1

Рисунок 1.5 – Планы ускорений

						-		_						
	Положения													
Величина	Рабочий ход										Солостой ход			
	0	1	2	3	6	7	К	8	9	10	11			
Длины отрезков в масштабе μ_l , мм														
$\left(\overline{AB}\right)$	107,5 78,3 51,1 34,0 30,4 40,9 63,6 93,1 107,5 118,8 129,4 130,0 120											126,3		
$\left(\overline{AC}\right)$	120,0	145,2	165,2	177,2	179,7	172,4	156,2	133,2	120,0	107,3	86,0	80,7	95,3	
	Натуральные значения длин, м													
l_{AB}	0,215	0,157	0,102	0,068	0,061	0,082	0,127	0,186	0,215	0,238	0,259	0,260	0,253	
l _{AC}	0,240	0,290	0,330	0,354	0,359	0,345	0,312	0,266	0,240	0,215	0,172	0,161	0,191	

Таблица 1.3 – Значения длин, используемых в расчетах

Таблица 1.4 – Значения линейных скоростей, м/с

						По	ложе	ния					
Величина				Раб	очий	ход				X	олост	гой хо	од
	0	1	2	3	4	5	6	7	к	8	9	10	11
$ u_{C_2C_6}$	0,785	0,697	0,491	0,222	0,073	0,359	0,603	0,76	0,785	0,756	0,456	0,162	0,651
$U_{B_5B_2}$	0,785	0,899	0,690	0,319	0,106	0,514	0,822	0,894	0,785	0,578	0,089	0,002	0,307
υ_{AC_2}	0	0,361	0,613	0,753	0,782	0,698	0,503	0,196	0	0,212	0,639	0,768	0,439
$ u_{C_2} $	0,785	0,697	0,491	0,222	0,073	0,359	0,603	0,760	0,785	0,756	0,456	0,162	0,651
\mathcal{U}_{B_2}	0,785	0,892	0,941	0,924	0,917	0,936	0,930	0,830	0,785	0,878	1,664	2,012	1,078
\mathcal{U}_{S_2}	0,785	0,745	0,676	0,624	0,612	0,645	0,709	0,772	0,785	0,767	0,570	0,420	0,699
\mathcal{U}_{B_5}	0	0,591	0,827	0,902	0,914	0,878	0,741	0,359	0	0,481	1,641	2,011	1,078

						По	поже	ния					
Величина				Раб	очий	ход				X	олост	гой хо	эд
	0	1	2	3	4	5	6	7	к	8	9	10	11
$a_{C_2A}^n$	0	0,45									2,38		
$a_{C_2A}^{ au}$	6,16	2,38									6,97		
$a_{C_2C_6}^{\kappa}$	0	1,73									3,39		
$a_{C_2C_6}^r$	0	2,38									7,39		
$a_{B_5B_2}^{\kappa}$	0	2,23									0,66		
$a_{B_5B_2}^r$	4,87	1,16									4,81		
a_{s_2}	4,11	5,20									6,13		
a_{B_5}	12,65	5,59									15,12		

Таблица 1.5 – Значения линейных ускорений, м/с²

Таблица 1.6 – Значения угловых скоростей и ускорений

		Положения											
Величина				X	Холостой ход								
	0	1	2	3	4	5	6	7	К	8	9	10	11
ω_2, c^{-1}	0	1,24	1,86	2,12	2,18	2,02	1,61	0,74	0	0,99	3,72	4,76	2,30
направ- ление ω_2	_	U	U	U	ひ	U	U	U	_	U	U	G	U
$\mathcal{E}_2, \mathbf{c}^{-2}$	25,67	8,21									40,52		
направ- ление ε_2	U	U									U		

ЛИСТ 2

2 Кинетостатическое (силовое) исследование механизма

Основная задача кинетостатического исследования механизма состоит в определении давления в кинематических парах и усилий (инерционных нагрузок), действующих на отдельные звенья механизма, а так же в определении уравновешивающих сил и моментов. Решение этой задачи необходимо для последующего расчета звеньев и элементов кинематических пар на прочность, для определения сил, работ и мощностей, затрачиваемых на преодоление сил трения и механического коэффициента полезного действия машины.

При этом кроме заданных сил движущих и сил полезных сопротивлений, учитывают и силы инерции звеньев и моменты их пар. Значения сил инерции и моментов их пар подсчитываются в предположении о равномерном вращении ведущего звена механизма.

При кинематическом и кинетостатическом исследованиях механизма закон движения начального (входного) звена в первом приближении считается известным. Например, если начальным звеном является кривошип, то скорость его вращения принимают постоянной. В действительности же кривошип вращается *неравномерно*, вызывая дополнительные динамические нагрузки, которые необходимо учитывать при проектировании машины.

При *динамическом исследовании* механизмов предварительно должны быть заданы или определены силы, действующие на их звенья. Когда объектом исследования является рабочая (технологическая) машина, задается график изменения производственного сопротивления, а момент движущих сил, приложенных к входному звену, приближенно принимается постоянным, и наоборот. Таким образом, *силовой расчет* позволяет правильно конструировать звенья и элементы привода. При *динамическом исследовании* решаются вопросы построения машины с заданной неравномерностью движения, определения затрат времени на разгон и остановку, создания ее модели и т.д.

Кинетостатика – раздел механики, в котором рассматриваются способы решения динамических задач с помощью аналитических или графических методов статики. В основе кинетостатики лежит принцип д'Аламбера: если к действующим на точки материальной системы заданным (активным) силам и силам реакций связей условно присоединить силы инерции, то полученная система сил будет условно находиться в равновесии.

Графическая часть выполняется на листе формата A1 (594×841) мм (ГОСТ 2.301-68 ЕСКД. Форматы)

1. Схема механизма вычерчивается в положении, соответствующему рабочему или холостому ходам, для которых на листе 1 выполнены планы скоростей и ускорений. В этих положениях к звеньям прикладываются силы полезных сопротивлений (только для рабочего хода), силы тяжести, а также полученные из расчета силы инерции и моменты их пар (инерционная нагрузка).

2. Для указанных положений строятся планы скоростей, повернутые вокруг полюса (P_V) на 90° с тем, чтобы в дальнейшем облегчить решение задачи об уравновешивании механизма по методу вспомогательного рыча-га Н.Е. Жуковского.

3. Переносится на чертеж, построенный на листе 1, необходимый для соответствующего положения (второго) план ускорений.

4. Вычерчиваются группы Ассура в таком виде и в таком же масштабе, в каком они встречаются на плане механизма, к их звеньям прикладываются активные силы, инерционная нагрузка и соответствующие силы реакций связей.

Последовательность отделения групп для силового расчета соответствует последовательности принятой при структурном исследовании, т.е. начинать нужно с исследования равновесия структурной группы, наиболее удаленной от ведущего звена и оканчивать расчетом равновесия этого звена.

5. Строятся планы сил, с помощью которых определяются величины и направления реакций, действующих в кинематических парах данных групп, а также уравновешивающая сила (момент) на ведущем звене.

6. Производится расчет уравновешивающей силы или момента методом вспомогательного рычага Н.Е. Жуковского [основное условие равновесия рычага $\sum M_{P_v}(\bar{P}_i) = 0$].

2.1 Заданные силы

Силы тяжести звеньев определяются по формуле:

$$G = mg \approx 9,8m$$
 [H]

и прикладываются в центрах масс звеньев, массы которых заданы. Сила полезного сопротивления $\overline{Q}_{\Pi C}$ дается в задании в виде постоянной величины (в пределах рабочего хода), механической характеристики или индикаторной диаграммы двигателя. Прикладывается сила полезного сопротивления к исполнительному (пятому) выходному звену механизма.

2.2 Определение сил инерции и моментов их пар (инерционной нагрузки)

Известно, что в общем случае все силы инерции звена, совершающего плоскопараллельное движение и имеющего плоскость симметрии, параллельную плоскости движения, могут быть сведены к главному вектору сил инерции \overline{P}_{II} и к главному моменту сил инерции M_{II} , определяемых по формулам:

$$\overline{P}_{II} = -m\overline{a}_{S} \ [H];$$
$$M_{II} = -J_{S}\varepsilon \ [H \cdot M],$$

где m – масса звена, сосредоточенная в центре масс (точка S), кг;

 a_{s} – абсолютное ускорение центра масс звена (точки S), м/с²;

 J_{s} – момент инерции звена, относительно оси, проходящей через центр масс звена (точка *S*) и направленной перпендикулярно к плоскости движения, кг · м²;

 ε – угловое ускорение звена, с⁻².

Знак минус в вышеприведенных уравнениях указывает на то, что вектор силы \overline{P}_{II} направлен противоположно вектору \overline{a}_{s} , а момент M_{II} действует в плоскости, параллельной плоскости движения звена и направлен в сторону, обратную угловому ускорению ε .

Рассмотрим несколько частных случаев определения сил инерции в зависимости от характера движения звеньев.

1. <u>Поступательное движение</u>. При поступательном движении звена 5 с переменной скоростью будет возникать только главный вектор сил инерции \overline{P}_{H5} . Этот вектор приложен в центре масс звена 5 и направлен в сторону, противоположную вектору ускорения \overline{a}_{B_5} . 2. <u>Вращательное движение</u>. При этом виде движения следует рассматривать два случая:

а) звено 3 вращается вокруг оси, проходящей через центр масс S_3 (центр вращения C и центр масс S_3 совпадают);

б) звено 3 вращается вокруг оси, не проходящей через центр масс S_3 (центр вращения C и центр масс S_3 не совпадают).

В первом случае возникает только момент пары сил инерции $M_{H3} = -J_{S_3}\varepsilon_3$; если звено 3 вращается равномерно ($\omega_3 = const$), то сила инерции и момент сил инерции равны нулю, так как $a_{S_3} = 0$ и $\varepsilon_3 = 0$.

Во втором случае (рисунок 2.1) возникают сила инерции $\overline{P}_{H3} = -m_3 \overline{a}_{S_3}$, приложенная в центре масс (точке S_3), и момент сил инерции $M_{H3} = -J_{S_3} \varepsilon_3$ (случай чистого качания звена 3); если звено 3 вращается равномерно ($\omega_3 = const$), то возникает только сила инерции \overline{P}_{H3} , равная произведению массы звена на нормальное ускорение его центра масс:

$$\overline{P}_{U3} = -m_3 \overline{a}_{S_3}^n$$

Указанные сила \overline{P}_{H3} и момент пары M_{H3} могут быть приведены к одной силе \overline{P}_{H3}^{R} , которая будет приложена уже не в центре масс (точке S_{3}), а в другой точке – K'_{3} . Точка K'_{3} – точка приложения результирующей силы инерции \overline{P}_{H3}^{R} . Точка K_{3} – точка качания звена 3 (рисунок 2.1).

Заметим, что для случая чистого качания звена точки K_3 и K'_3 совпадают. Центр качания лежит на продолжении линии, соединяющей центр вращения *C* с центром масс S_3 и находится от центра вращения *C* на расстоянии l_{CK_3} , определяемому по уравнению:

$$l_{CK_3} = l_{CS_3} + \frac{J_{S_3}}{m_3 l_{CS_3}} \, [M].$$

Рисунок 2.1 – Кинематическая схема механизма (1); план скоростей (2); план ускорений (3)

Следовательно, чтобы в этом случае привести силу \overline{P}_{H3} и момент M_{H3} к результирующей \overline{P}_{H3}^{R} , необходимо приложить силу $\overline{P}_{H3} = \overline{P}_{H3}^{R}$, сохраняя ее величину и направление, в центре качания звена (точке K_{3}).

3. <u>Сложное движение</u>. При сложном (плоскопараллельном) движении звена 2 (рисунок 2.2) силы инерции могут быть представлены главным вектором \overline{P}_{H2} и главным моментом M_{H2} сил инерции.

Однако, в этом случае, для удобства проведения кинетостатического исследования сила инерции и момент сил инерции могут быть заменены результирующей силой инерции, линия действия которой проходит через полюс инерции (точку T_2). Иногда точку T_2 называют обобщенным центром качания.

Рисунок 2.2 – К вопросу о сложном (плоскопараллельном) движении звена 2

Положение полюса инерции T_2 можно определить, если рассматривать сложное движение звена 2 как переносное поступательное с ускорением какой-либо точки (при условии, что она не является центром масс звена) и относительное вращательное вокруг этой точки. В качестве примера определим положение точки *T*₂ звена 2 кривошипно-ползунного механизма (рисунок 2.2).

Звено 2 совершает плоскопараллельное движение. Ускорения точек *А* и *В* заданы планом ускорений. Ускорение центра масс (точки *S*₂) равно:

$$a_{S_2}=\mu_a(\overline{\pi S_2}).$$

Сила инерции $\overline{P}_{H_2}^e$ в переносном поступательном движении звена 2 проходит через точку замещения *B* (число точек замещения две *B* и K_2 , соответствующие в них замещающие массы m_B и m_{K_2}) и направлена противоположно вектору ускорения \overline{a}_{B_3} [вектор ($\overline{\pi b_3}$) на плане ускорений].

Тогда положение точки качания K_2 звена 2 определится уравнением:

$$l_{BK_2} = l_{BS_2} + \frac{J_{S_2}}{m_2 l_{BS_2}} \,.$$

Далее через точки *B* и K_2 проводим линии, параллельные векторам ускорений этих точек \overline{a}_{B_3} и \overline{a}_{K_2} [векторы $(\overline{\pi b_3})$ и $(\overline{\pi k_2})$ на плане ускорений], на пересечении которых получим точку T_2 . Через точку T_2 параллельно вектору \overline{a}_{S_2} [вектор $(\overline{\pi s_2})$ на плане ускорений] проводим линию до пересечения с прямой, проходящей через оси шарниров *A* и *B*, тем самым определяя точку K'_2 приложения результирующей силы инерции $\overline{P}_{H_2}^R$, направленной противоположно вектору \overline{a}_{S_2} и равной по величине:

$$P_{U2}^R = m_2 a_{S_2}$$

Представленный способ замены массы звена эквивалентной системой сосредоточенных масс применим для определения линии действия результирующей силы инерции \overline{P}_{H2}^{R} построением полюса инерции (точка T_{2}) – пересечение линий действия сил \overline{P}_{HB} и $\overline{P}_{HK_{2}}$. Заметим, что для определения

положения точки T_2 нет надобности вычислять силы инерции \overline{P}_{UB} и \overline{P}_{HK_2} , достаточно через точки B и K_2 провести направления \overline{a}_{B_3} и \overline{a}_{K_2} , а в точке их пересечения приложить силу $\overline{P}_{U2}^R = -m_2 \overline{a}_{S_2}$, направленную противоположно вектору ускорения \overline{a}_{S_2} .

2.3 Определение реакций в кинематических парах

При работе механизма в результате действия всех приложенных к его звеньям сил в кинематических парах возникают силы реакции связей, или давления. Для определения реакций в кинематических парах применяется метод планов сил. Расчет ведется в предположении, что трение в кинематических парах отсутствует и все силы, действующие на звенья механизма, расположены только в одной плоскости.

При отсутствии сил трения сила, возникающая между двумя звеньями, всегда направлена по нормали к поверхности их касания. В поступательной паре все элементарные силы взаимодействия и их равнодействующая будут расположены перпендикулярно направляющей поступательной пары.

Определение реакций в кинематических парах с применением при этом метода сил рассмотрено на примере кривошипно-кулисного механизма (рисунки 2.3, 2.4, 2.5), включающего двухповодковую группу 3-его вида с одной внутренней поступательной кинематической парой (звенья 2 и 3) и начальный механизм – механизм 1-го класса (звенья 1 и 4).

Пусть звено *AB* нагружено силой тяжести \overline{G}_2 , линия действия, величина и точка приложения которой известны. Покажем инерционную нагрузку. Массами звеньев *1* и *4* в виду их малости пренебрегаем. Так как звено *2* совершает плоскопараллельное движение, то возникают сила
инерции \overline{P}_{H_2} , приложенная в центре масс (точке S_2) и момент сил инерции M_{H_2} . Силу \overline{P}_{H_2} направляем противоположно вектору ускорения \overline{a}_{S_2} [вектору $(\overline{\pi s_2})$ на плане ускорений], а момент M_{H_2} – противоположно направлению углового ускорения ε_2 звена 2.

Рисунок 2.3 – Пример размещения массы m_2 звена 2 на две точки A и K_2

Приводим силу \overline{P}_{H2} и момент M_{H2} к результирующей \overline{P}_{H2}^{R} , линия действия которой проходит через полюс инерции (точку T_{2}).

За замещающие точки возьмем A и K_2 . Тогда положение точки K_2 (расстояние l_{AK_2}) определится уравнением:

$$l_{AK_2} = l_{AS_2} + \frac{J_{S_2}}{m_2 l_{AS_2}}$$

Далее через точки A и K_2 проводим линии, параллельные векторам ускорений этих точек \bar{a}_A и \bar{a}_{K_2} [векторы $(\overline{\pi a})$ и $(\overline{\pi k_2})$ на плане ускорений], на пересечении которых получим точку T_2 . Через точку T_2 параллельно вектору \bar{a}_{S_2} [вектор $(\overline{\pi s_2})$ на плане ускорений] проводим линию до пересечения с осью AB, тем самым определяя точку K'_2 приложения результирующей силы инерции $\bar{P}^R_{H_2}$, направленной противоположно вектору \bar{a}_{S_2} и равной по величине:

$$P_{M2}^R = m_2 a_{S_2} \, .$$

При выделении из ведомой части механизма группы или отдельно звена (именно в таком виде и в том же масштабе, в каком они встречается на механизме) необходимо действие отсоединенной части механизма заменить реакциями, приложенными к соответствующим элементам кинематических пар выделенной группы.

Условимся силу, действующую на звено *i* со стороны звена *j*, обозначать \overline{R}_{ji} . Для нашего примера требуется найти силы взаимодействия звеньев между собой, т.е. реакцию $\overline{R}_{41} = -\overline{R}_{14}$ в шарнире *O*, давления отсоединенных звеньев 2 и 3 в шарнирах *A* и *B*: $\overline{R}_{12} = -\overline{R}_{21}$, $\overline{R}_{43} = -\overline{R}_{34}$.

Рисунок 2.4 – Кинетостатика группы Ассура II класса, 2 порядка, 3 вида

Выделяем группу Ассура II класса, 2 порядка, 3 вида (звенья 2 и 3). Реакцию \overline{R}_{12} раскладываем на составляющие \overline{R}_{12}^n (линия действия которой совпадает с осью *AB*) и \overline{R}_{12}^{τ} (линия действия которой перпендикулярна оси *AB*). Линия действия реакции \overline{R}_{43} перпендикулярна оси *AB* (рисунок 2.4).

Запишем геометрическое условие равновесия для выделенной группы:

$$\underline{\overline{R}_{12}^{\tau}} + \underline{\overline{R}_{12}^{n}} + \underline{\overline{R}_{43}} + \underline{\overline{G}_{2}} + \underline{\overline{P}_{H2}^{R}} = 0.$$

Реакции \overline{R}_{12}^{τ} , \overline{R}_{12}^{n} , \overline{R}_{43} по величине неизвестны, а так как графически можно определить не более двух неизвестных, то необходимо составить дополнительное алгебраическое уравнение моментов. Например, для определения величины \overline{R}_{43} необходимо составить сумму моментов всех сил относительно точки A:

39

$$\sum M_{A}(\bar{P}_{i}) = -R_{43}d_{1} + G_{2}d_{2} + P_{H2}^{R}d_{3} = 0.$$

Откуда

$$R_{43} = \frac{G_2 d_2 + \overline{P}_{H_2}^R d_3}{d_1}$$

Для определения \overline{R}_{12}^r и \overline{R}_{12}^n строим план сил (рисунок 2.4). Для этого в произвольном масштабном коэффициенте сил μ_P из точки P откладываем вектор \overline{G}_2 , к нему добавляем геометрически вектора \overline{P}_{H2}^R и \overline{R}_{43} . Через начало вектора \overline{G}_2 проводим линию 1–1, параллельную линии действия силы \overline{R}_{12}^r , через конец вектора \overline{R}_{43} проводим линию 2–2, параллельную линии действия силы \overline{R}_{12}^n . Точка пересечения линий 1–1 и 2–2 определяет конец вектора \overline{R}_{12}^n и начало вектора \overline{R}_{12}^r . Полная реакция \overline{R}_{12} определится векторной суммой:

$$\overline{R}_{12} = \overline{R}_{12}^n + \overline{R}_{12}^\tau$$

Для определения давления звена 2 на звено 3 (\overline{R}_{23}) нужно замкнуть план сил, действующих только на звено 3 ($\overline{R}_{23} = -\overline{R}_{43}$).

2.4 Силовой анализ ведущего звена и определение уравновешивающей силы

Для выполнения условия статической определимости кинематической цепи для механизма 1-го класса (начального механизма) прикладывается в точке *A* пока неизвестная уравновешивающая сила \overline{P}_{yp} , линия действия которой перпендикулярна оси *OA* кривошипа (рисунок 2.5). Так же к точ-ке *A* звена *I* прикладывается сила $\overline{R}_{21} = -\overline{R}_{12}$. В шарнире *O* будет действовать реакция \overline{R}_{41} , линия действия которой, ввиду того, что звено *I* невесомо, параллельна оси *OA* кривошипа.

Рисунок 2.5 – Кинетостатика механизма 1-го класса

Запишем геометрическое условие равновесия звена 1:

$$\underline{\overline{R}}_{21} + \underline{\overline{R}}_{41} + \underline{\overline{P}}_{yp} = 0.$$

Для определения величины уравновешивающей силы составляем уравнение моментов всех сил относительно шарнира *O* :

$$\sum M_O\left(\overline{P}_i\right) = -R_{21}h + P_{yp}\left(\overline{OA}\right) = 0.$$

Откуда

$$P_{yp} = \frac{R_{21}h}{\left(\overline{OA}\right)} \, \left[\mathrm{H}\right].$$

Уравновешивающий момент M_{yp} соответственно определится:

$$M_{yp} = P_{yp} l_{OA} \ [\text{H} \cdot \text{M}].$$

Задавшись масштабным коэффициентом сил $\mu_p \left[\frac{\text{H}}{\text{MM}} \right]$, строим план (многоугольник) сил и определяем величину давления \overline{R}_{41} в шарнире O. Для этого из точки P откладываем вектор \overline{R}_{21} в выбранном масштабном коэффициенте сил μ_p . Через начало вектора \overline{R}_{21} проводим линию 3–3, параллельную линии действия силы \overline{P}_{yp} , через конец вектора \overline{R}_{21} проводим

линию 4-4, параллельную линии действия силы \overline{R}_{41} . Точка пересечения линий 3-3 и 4-4 определяет конец вектора \overline{R}_{41} и начало вектора \overline{P}_{yp} .

2.5 Определение уравновешивающей силы с помощью вспомогательного рычага Н.Е. Жуковского

Для механизма строится повернутый на 90° (в любую сторону) план скоростей (рисунок 2.6), в одноименные точки которого прикладываются все силы (силы полезного сопротивления, силы тяжести звеньев, инерционная нагрузка), действующие на звенья механизма (без масштаба), сохранив их направления. Заметим, что силы реакции связей сюда входить не будут, так как их результирующая будет равна нулю. План скоростей с приложенными силами, в том числе и уравновешивающей силой, рассматривается как жесткий рычаг, уравновешиваемый моментом силы \overline{P}_{yp} .

Уравновешивающую силу \overline{P}_{yp} прикладывают в точке, соответствующей концу кривошипа, перпендикулярную вектору скорости этой точки.

Составляется уравнение моментов всех сил относительно полюса P_V повернутого на 90° плана скоростей, взяв плечи сил по чертежу в мм:

$$\sum M_{P_V}\left(\overline{P}_i\right) = -P_{H_2}^R h_1 + G_2 h_2 - P_{yp} \cdot \left(\overline{P_V a}\right) = 0.$$

Рисунок 2.6 – Вспомогательный рычаг Н.Е. Жуковского

Подставив значения сил, их плеч, определяется неизвестная величина уравновешивающей силы:

$$P_{yp} = \frac{-P_{H2}^R h_1 + G_2 h_2}{\left(\overline{P_V a}\right)}.$$

Проделав расчеты уравновешивающей силы по методу планов сил и с помощью вспомогательного рычага Н.Е. Жуковского, необходимо сравнить эти величины и определить погрешность, которая не должна превышать 5 %.

2.6 Кинетостатический расчет кривошипно-кулисного механизма

Основной целью исследования является определение реакций в кинематических парах механизма и определение уравновешивающей силы P_{yn} .

Реакции в кинематических парах определим методом построения планов сил. Проверочный расчет выполним с помощью вспомогательного рычага Н.Е. Жуковского.

Расчет выполним для «1» и «9» положений (рисунки 2.7 и 2.8).

Исходные данные для расчета (таблицы 1.5 и 1.6)

Для «1» положения (рабочий ход):

$$Q_{\Pi C} = 1700 \text{ H}; G_5 = 160 \text{ H}; G_2 = 110 \text{ H}; J_{s_2} = 0,50 \text{ kg} \cdot \text{m}^2;$$

 $a_{B_5} = 5,59 \text{ m/c}^2; a_{s_2} = 5,20 \text{ m/c}^2; \varepsilon_2 = 8,21 \text{ c}^{-2}.$

Для «9» положения (холостой ход):

$$Q_{\Pi C} = 0$$
; $G_5 = 160$ H; $G_2 = 110$ H; $J_{S_2} = 0.5$ KF · M²;
 $a_{B_5} = 15,12$ M/c²; $a_{S_2} = 6,13$ M/c²; $\varepsilon_2 = 40,52$ c⁻².

Определение сил инерции и моментов сил инерции звеньев механизма

Определим силу инерции Р_{И5} для звена 5.

$$P_{H5} = m_5 \cdot a_{B_5} = \frac{G_5}{g} \cdot a_{B_5},$$

где *m*₅ – масса звена 5, кг;

- a_{B_5} ускорение точки *В* звена 5, м/с²;
- *G*₅ сила тяжести звена 5, H;
 - g ускорение свободного падения, м/с².

Для «1» положения:
$$P_{H5} = \frac{160}{9,81} \cdot 5,59 = 91,17 \text{ H}.$$

Для «9» положения: $P_{H5} = \frac{160}{9,81} \cdot 15,12 = 246,61 \text{ H}.$

Определим силу инерции P_{H2} и момент от силы инерции M_{H2} для звена 2.

$$P_{H2} = m_2 \cdot a_{S_2} = \frac{G_2}{g} \cdot a_{S_2},$$

где m_2 – масса звена 2, кг;

 a_{S_2} – ускорение точки S_2 звена 2, м/с²;

 G_2 – сила тяжести звена 2, H;

- g ускорение свободного падения, м/с².
- Для «1» положения: $P_{H2} = \frac{110}{9,81} \cdot 5, 2 = 58,31 \text{ H}.$ Для «9» положения: $P_{H2} = \frac{110}{9,81} \cdot 6,13 = 68,74 \text{ H}.$

$$M_{H2} = J_{S_2} \cdot \varepsilon_2,$$

где J_{S_2} – момент инерции звена 2, относительно оси, проходящей через центр масс звена (точка S_2), кг · м²;

- ε_2 угловое ускорение звена 2, с⁻².
- Для «1» положения: $M_{_{H2}} = 0,5 \cdot 8,21 = 4,11 \text{ H} \cdot \text{м}.$ Для «9» положения: $M_{_{H2}} = 0,5 \cdot 40,52 = 20,26 \text{ H} \cdot \text{м}.$

Заменим момент от сил инерций $M_{_{H2}}$ парой сил $\left(\overline{P}_2, \overline{P}_2'\right)$.

$$P_2 = P'_2 = \frac{M_{H2}}{l_{CB}} = \frac{M_{H2}}{(\overline{CB}) \cdot \mu_l},$$

где l_{CB} – расстояние между линиями действия сил \overline{P}_2 и \overline{P}_2' (длина звена *CB*), м;

 $\left(\overline{CB}\right)$ – расстояние на чертеже в масштабе μ_l , мм. $\left(\overline{CB}\right) = \left(\overline{CA}\right) + \left(\overline{AB}\right)$ (таблица 1.3).

Для «1» положения:

$$P_2 = P_2' = \frac{4,11}{223,5 \cdot 0,002} = \frac{4,11}{0,4468} = 9,2 \text{ H}.$$

Для «9» положения:

$$P_2 = P_2' = \frac{20,26}{215,4\cdot0,002} = \frac{20,26}{0,431} = 47,01 \text{ H}.$$

46

Кинетостатика группы Ассура II класса, II порядка, 4 вида

$$\underline{\underline{\overline{Q}}}_{\underline{\Pi C}} + \underline{\underline{\overline{P}}}_{\underline{H5}} + \underline{\underline{\overline{G}}}_{\underline{5}} + \underline{\overline{R}}_{\underline{24}} + \underline{\overline{R}}_{\underline{65}} = 0.$$

Для графического решения векторного уравнения выбираем масштабный коэффициент плана сил:

$$\mu_P = \frac{G_5}{\left(\overline{G}_5\right)}.$$

Для «1» положения:
$$\mu_P = \frac{160}{16} = 10 \frac{\text{H}}{\text{мм}}.$$

Для «9» положения: $\mu_P = \frac{160}{40} = 4 \frac{\text{H}}{\text{мм}}.$

Решая графически векторное уравнение, получим

	$R_{24}=(R_{24})\cdot\mu_P.$
Для «1» положения:	$R_{24} = 190, 6 \cdot 10 = 1906 \mathrm{H}$.
Для «9» положения:	$R_{24} = 63, 3 \cdot 4 = 253, 2 \text{ H}.$

 $R_{65} = (\bar{R}_{65}) \cdot \mu_P.$ Для «1» положения: $R_{65} = 49,1 \cdot 10 = 491$ H. Для «9» положения: $R_{65} = 25,9 \cdot 4 = 103,6$ H.

Кинетостатика группы Ассура II класса, II порядка, 3 вида

$$\underline{\overline{R}_{42}} + \underline{\overline{P}_{H2}} + \underline{\overline{G}_{2}} + \underline{\overline{R}_{12}}^{\tau} + \underline{\overline{R}_{12}}^{n} + \underline{\overline{R}_{63}} = 0.$$

$$\overline{R}_{42} = -\overline{R}_{24}.$$

Для определения неизвестной реакции \bar{R}_{12}^{τ} составим дополнительное уравнение равновесия:

$$\begin{split} \sum M_{c} \left(\bar{P}_{i} \right) &= 0; \quad -G_{2} \cdot 10, 3 - P_{H2} \cdot 2, 5 + R_{12}^{r} \cdot 86 - \left(R_{42} + P_{2} \right) \cdot 215, 5 = 0; \\ R_{12}^{r} &= \frac{G_{2} \cdot 10, 3 + P_{H2} \cdot 2, 5 + \left(R_{42} + P_{2} \right) \cdot 215, 5}{86}; \\ R_{12}^{r} &= \frac{110 \cdot 10, 3 + 68, 74 \cdot 2, 5 + \left(253, 2 + 47, 01 \right) \cdot 215, 5}{86}; \\ R_{12}^{r} &= \frac{1133 + 171, 85 + 64695, 255}{86} = 767, 44 \text{ H}. \\ \left(\bar{R}_{12}^{r} \right) &= \frac{R_{12}^{r}}{\mu_{p}} = \frac{767, 44}{4} = 191, 9 \text{ MM}. \end{split}$$

Решая графически векторное уравнение, получим

– для «9» положения

$$R_{12}^n = \left(\overline{R}_{12}^n\right) \cdot \mu_P.$$

Для «1» положения:	$R_{12}^n = 7, 3 \cdot 10 = 73 \text{ H}.$
Для «9» положения:	$R_{12}^n = 44 \cdot 4 = 176 \text{ H}.$

	$R_{63}=\left(\bar{R}_{63}\right)\cdot\mu_{P}.$
Для «1» положения:	$R_{63} = 101, 7 \cdot 10 = 1017 \text{ H}$
Для «9» положения:	$R_{63} = 121, 6 \cdot 4 = 486, 4 \text{ H}$

	$R_{12} = \left(\overline{R}_{12}\right) \cdot \mu_P.$				
Для «1» положения:	$R_{12} = 301, 1 \cdot 10 = 3011 \text{ H}.$				
Для «9» положения:	$R_{12} = 196, 9 \cdot 4 = 787, 6 \text{ H}.$				

Кинетостатика ведущего звена 1

Составим векторное уравнение равновесия ведущего звена 1.

$$\begin{split} \overline{R}_{21} + \overline{P}_{yp} + \overline{R}_{61} &= 0 \,. \\ \overline{R}_{21} &= -\overline{R}_{12} \,. \end{split}$$

Решая графически векторное уравнение, получим

	$P_{yp} = \left(\overline{P}_{yp}\right) \cdot \mu_P.$
Для «1» положения:	$P_{yp} = 144, 8 \cdot 10 = 1448 \text{ H}.$
Для «9» положения:	$P_{yp} = 130, 6 \cdot 4 = 522, 4 \text{ H}.$

$$R_{61} = (\overline{R}_{61}) \cdot \mu_P.$$

Для «1» положения: $R_{61} = 264 \cdot 10 = 2640$ H.
Для «9» положения: $R_{61} = 147, 3 \cdot 4 = 589, 2$ H.

Рисунок 2.7 *а* – Кинетостатика кривошипно-кулисного механизма (положение «1» – рабочий ход)

<u>Примечание к рисункам 2.7 *а*, *б*, *в*: размеры уменьшены в 2 раза.</u>

Рисунок 2.8 *а* – Кинетостатика кривошипно-кулисного механизма (положение «9» – холостой ход)

<u>Примечание к рисункам 2.8 *а*, *б*, *в*: размеры уменьшены в 2 раза.</u>

Строим повернутые на 90° (\circlearrowright) планы скоростей для «1» и «9» положений. В одноименные точки планов прикладываем все активные силы, силы инерции и уравновешивающие силы P'_{yp} . Составим уравнения моментов этих сил относительно полюсов планов скоростей (точек P_V).

Для «1» положения:

$$\sum M_{P_{v}} \left(\overline{P_{i}}\right) = 0; \quad -G_{2} \cdot 74,5 + P_{H2} \cdot 14 + P_{yp}' \cdot 78,5 - \left(P_{H5} + Q_{\Pi C}\right) \cdot 59,1 - P_{2} \cdot 55,6 = 0;$$

$$P_{yp}' = \frac{G_{2} \cdot 74,5 - P_{H2} \cdot 14 + \left(P_{H5} + Q_{\Pi C}\right) \cdot 59,1 + P_{2} \cdot 55,6}{78,5};$$

$$P_{yp}' = \frac{110 \cdot 74,5 - 58,31 \cdot 14 + \left(97,17 + 1700\right) \cdot 59,1 + 9,2 \cdot 55,6}{78,5} = 1453,54 \text{ H}.$$

Для «9» положения:

$$\begin{split} \sum M_{P_{v}}\left(\bar{P}_{i}\right) &= 0; \quad G_{2} \cdot 36,8 + P_{H2} \cdot 43,7 + P_{yp}' \cdot 78,5 - P_{H5} \cdot 164,1 - P_{2} \cdot 160 = 0; \\ P_{yp}' &= \frac{-G_{2} \cdot 36,8 - P_{H2} \cdot 43,7 + P_{H5} \cdot 164,1 + P_{2} \cdot 160}{78,5}; \\ P_{yp}' &= \frac{-110 \cdot 36,8 - 68,74 \cdot 43,7 + 246,61 \cdot 164,1 + 47,01 \cdot 160}{78,5} = 521,51 \text{ H}. \end{split}$$

Определим расхождение между P_{yp} и P'_{yp} .

Для «1» положения: $\Delta = \frac{P'_{yp} - P_{yp}}{P'_{yp}} \cdot 100 \%.$ $\Delta = \frac{P_{yp} - P'_{yp}}{P_{yp}} \cdot 100 \%.$

$$\Delta = \frac{1453,54 - 1448}{1453,54} \cdot 100 \ \% = 0,38 \ \% \ . \qquad \Delta = \frac{522,4 - 521,51}{522,4} \cdot 100 \ \% = 0,17 \ \% \ .$$

ЛИСТ 3

3 Определение момента инерции маховика механизма и его геометрических размеров

В общем случае при установившемся режиме работы машины угловая скорость ведущего (входного) звена OA, хотя и остается в среднем постоянной, но внутри цикла изменяется, проходя через максимальное ω_{max} и минимальное ω_{min} значения. Неравномерность вращения оценивается ко-эффициентом неравномерности δ :

$$\delta = \frac{\omega_{\max} - \omega_{\min}}{\omega_{cp}},$$

где ω_{cp} – средняя за цикл угловая скорость ведущего входного звена, с⁻¹.

Чем меньше δ , тем равномернее вращается ведущее звено. Так как δ – величина весьма малая, то это позволяет определять ω_{cp} равным полусумме максимального и минимального значений:

$$\omega_{cp} = \frac{\omega_{\max} + \omega_{\min}}{2} \, .$$

Для каждого вида машин имеется своя допустимая величина δ , выработанная практикой, — так для двигателей внутреннего сгорания это 0,0125...0,0060, для насосов — 0,20...0,03, для сельскохозяйственных машин — 0,10...0,02.

Наилучшие условия работы всех машин – абсолютно равномерное вращение их главного вала (ведущего звена), т.е. при $\delta = 0$. Колебания скорости нежелательны по многим причинам, поэтому их стремятся сократить до допустимой величины. Иными словами допустимую величину коэффициента неравномерности δ надо сделать приемлемо малой. Это достигается путем постановки на главном валу машины добавочной массы, называемой маховиком. Необходимый момент инерции маховика, обеспе-

чивающий вращение главного вала машины с заданным коэффициентом неравномерности, можно определить по формуле:

$$J_{\text{MAXOBUKA}} = \frac{\mu_T(\overline{kl})}{\delta \omega_{cp}^2}.$$

Приведенный момент инерции махового колеса может быть определен по величине отрезка (\overline{kl}) на оси ординат $O\Delta T$ диаграммы энергомасс $\Delta T = f(J_{II})$ (см. рисунок 3.6 б).

Маховик, накапливая на своем ободе (бандажном кольце) кинетическую энергию в моменты, когда работа движущих сил оказывается больше работы сил сопротивлений и возвращая ее машине, когда работа сил сопротивлений превышает работу движущих сил, содействует повышению плавности хода машины.

Так как параметры ω_{cp} и δ заданы, то задача определения момента инерции маховика сводится к определению выражения $\mu_T \cdot (\overline{kl})$. Это можно сделать различными методами: Мерцалова, Виттербауэра и др. Мы рассмотрим метод Виттербауэра. Но для того, чтобы использовать любой из методов, нужно вначале научиться многозвенный механизм машинного агрегата, нагруженный силами и моментами, приложенными к различным его звеньям, заменять динамической моделью – одним звеном, нагруженным либо одной силой, либо одним моментом, имеющим такую массу, которая заменит массы всех звеньев. Такой процесс носит название приведения сил и масс.

3.1 Приведение сил и моментов

Приведение сил, т.е. замена всех сил и моментов, действующих на звенья механизма, одной силой \overline{P}_{Π} или одним моментом M_{Π} основано на условии эквивалентности мгновенных мощностей:

$$N_{\Pi} = \sum_{i=1}^n N_i \, .$$

В этом уравнении N_{II} – мощность, развиваемая приведенной силой или приведенным моментом, и $\sum_{i=1}^{n} N_i$ – мощности, развиваемые силами и моментами, приложенными к *i* -му звену и подлежащими приведению.

Мощность N_{Π} может быть представлена в виде:

$$N_{\Pi} = P_{\Pi} \upsilon_A = M_{\Pi} \omega_1,$$

где P_{Π} – величина силы, приведенной к точке *А* звена приведения (рисунок 3.1), могущей быть в частном случае или приведенной движущей силой P_{Π} или приведенной силой сопротивления P_{C} , H;

- v_A скорость точки A приведения, м/с;
- M_{Π} приведенный момент, Н · м;
 - ω_1 угловая скорость звена приведения, с⁻¹.

Рисунок 3.1 – К вопросу определения приведенных силы P_{Π} и момента M_{Π}

$$P_{\Pi} = \frac{\sum_{i=1}^{n} N_i}{\upsilon_A};$$
$$M_{\Pi} = \frac{\sum_{i=1}^{n} N_i}{\omega_1}.$$

Сумма $\sum_{i=1}^{n} N_{i}$ в развернутом виде может быть представлена так:

$$\sum_{i=1}^n N_i = \sum_{i=1}^n P_i \upsilon_i \cos \alpha_i + \sum_{i=1}^n M_i \omega_i ,$$

где P_i – сила, приложенная к *i*-му звену, H;

- υ_i скорость точки приложения силы P_i , м/с;
- α_i угол между векторами \overline{P}_i и $\overline{\upsilon}_i$, град. ($\alpha_i = \left(\overline{P}_i, \overline{\upsilon}_i\right)$);
- M_i момент, приложенный к *i* -му звену, $H \cdot M$;
- ω_i угловая скорость *i* -го звена, к которому приложен момент M_i , c⁻¹.

Подставляя выражение для $\sum_{i=1}^{n} N_i$, получим:

$$P_{\Pi} = \sum_{i=1}^{n} \frac{P_{i} \upsilon_{i} \cos\left(\overline{P}_{i}, \overline{\upsilon}_{i}\right)}{\upsilon_{A}} + \sum_{i=1}^{n} \frac{M_{i} \omega_{i}}{\upsilon_{A}};$$
$$M_{\Pi} = \sum_{i=1}^{n} \frac{P_{i} \upsilon_{i} \cos\left(\overline{P}_{i}, \overline{\upsilon}_{i}\right)}{\omega_{1}} + \sum_{i=1}^{n} \frac{M_{i} \omega_{i}}{\omega_{1}},$$

где ω_1 – угловая скорость ведущего (входного) звена, с⁻¹.

<u>Пример</u>. Дан механизм компрессора (рисунок 3.2). Известно: угловая скорость кривошипа $\omega_1 = 50 \text{ c}^{-1}$; длина кривошипа $l_{OA} = 0,08 \text{ м}$; длина шатуна $l_{AB} = 0,174 \text{ м}$; сила давления газов на поршень $P_{\Gamma} = 2000 \text{ H}$; угол $\alpha = 45^{\circ}$. Определить приведенный к валу *O* звена *OA* приведенный момент M_{II} от силы \overline{P}_{Γ} .

Рисунок 3.2 – Механизм компрессора

Решение. Записываем формулу применительно к примеру:

$$M_{\Pi} = \frac{P_{\Gamma} \upsilon_B \cos 180^\circ}{\omega_1}$$

Для определения скорости $\upsilon_{\scriptscriptstyle B}$ строим план скоростей по уравнению:

$$\overline{\upsilon}_B = \overline{\upsilon}_A + \overline{\upsilon}_{BA}.$$

В этом уравнении все векторы известны по направлению: $\overline{\upsilon}_B \parallel (x-x);$ $\overline{\upsilon}_A \perp OA; \ \overline{\upsilon}_{BA} \perp AB$. Вектор $\overline{\upsilon}_A$ известен по величине:

$$v_A = \omega_1 l_{OA} = 50 \cdot 0,08 = 4,0 \text{ m/c}.$$

Масштабный коэффициент плана скоростей

$$\mu_V = \frac{\nu_A}{\left(\overline{P_V a}\right)} = \frac{4,0}{40} = 0,1 \ \frac{\text{M/c}}{\text{MM}}.$$

Из плана скоростей находим $\upsilon_B = \left(\overline{P_V b}\right) \cdot \mu_V = 0, 1 \cdot 38 = 3,8 \text{ м/с}.$

$$M_{\Pi} = \frac{2000 \cdot 3.8 \cdot (-1)}{50} = -152 \text{ H} \cdot \text{m}.$$

3.2 Приведение масс и моментов инерции

Этот метод позволяет заменить массы и моменты инерции звеньев механизма моментом инерции одного условного звена динамической модели, который называется приведенным моментом инерции J_{Π} . Величина J_{Π} определяется из условия равенства кинетической энергии модели T_{Π} и кинетической энергии механизма T_M , т.е. $T_{\Pi} = T_M$. В свою очередь:

$$T_{\Pi}=\frac{J_{\Pi}\omega_1^2}{2}.$$

Откуда

$$J_{\Pi} = \frac{2T_{\Pi}}{\omega_1^2}.$$

Так как угловая скорость ω_1 ведущего звена всегда задана, то для определения J_{Π} необходимо сначала найти кинетическую энергию механизма, которая, как известно, складывается из кинетических энергий всех его подвижных звеньев, совершающих как поступательное, так и вращательное движения.

<u>Пример</u>. Дан кулисный механизм строгального станка. Известно что угловая скорость кривошипа $\omega_1 = 3 \text{ c}^{-1}$; длины звеньев $l_{OA} = 0,20 \text{ m}$, $l_{CD} = 1,20 \text{ m}$, $l_{BD} = 0,40 \text{ m}$, $l_{CS_3} = 0,5l_{CD}$, a = 0,70 m, b = 0,60 m; массы звеньев $m_3 = 15 \text{ кг}$, $m_5 = 40 \text{ кг}$; момент инерции $J_{S_3} = 1,2 \text{ кг} \cdot \text{m}^2$.

Определить приведенный момент инерции J_{Π} .

<u>Решение</u>. Построим механизм строгального станка в выбранном масштабе (рисунки 3.3 *a*, *б*) в 12-ти положениях. Для этого определим масштабный коэффициент длин:

$$\mu_l = \frac{l_{OA}}{(\overline{OA})} = \frac{0,2}{20} = 0,01 \frac{M}{MM}$$

Строим планы скоростей кулисного механизма строгального станка. Обозначим через A_1 на схеме механизма точку A, принадлежащую звену $1, A_2$ – звену 2 и A_3 – звену 3.

Построение плана скоростей группы Ассура II класса, II порядка, 3 вида

Согласно теореме о сложении скоростей записываем векторные уравнения:

$$\begin{cases} \overline{\upsilon}_{A_3} = \overline{\upsilon}_{A_1} + \overline{\upsilon}_{A_3A_1}; \\ \frac{\overline{\Box}\overline{\upsilon}A}{\overline{\Box}\overline{\upsilon}A} & \frac{\overline{\Box}\overline{\upsilon}CD}{\overline{\Box}CD}; \\ \overline{\upsilon}_{A_3} = \overline{\upsilon}_C + \overline{\upsilon}_{A_3C}. \\ = 0 & \frac{\overline{\Box}CD}{\overline{\Box}CD}; \end{cases}$$

Приравнивая правые части уравнений, получим:

$$\frac{\overline{U}_{A_3C}}{\perp CD} = \frac{\overline{U}_{A_1}}{\pm \overline{DA}} + \frac{\overline{U}_{A_3A_1}}{\parallel CD}$$

В этом уравнении известны все направления векторов:

$$\overline{\nu}_{A_1} \perp OA$$
; $\overline{\nu}_{A_3A_1} \parallel CD$; $\overline{\nu}_{A_3C} \perp CD$.

Рисунок 3.3 а – Кинематическая схема механизма и планы скоростей

Рисунок 3.3 б – Кинематическая схема механизма и планы скоростей

64

Величины скоростей точек A_1 и A_2 определяются равенством:

$$\upsilon_{A_1} = \upsilon_{A_2} = \omega_1 l_{OA}$$
.
 $\upsilon_{A_1} = 3, 0 \cdot 0, 2 = 0, 6 \text{ m/c}$.

Масштабный коэффициент плана скоростей:

$$\mu_V = \frac{D_{A_1}}{\left(\overline{P_V a_1}\right)},$$

где $\left(\overline{P_{V}a_{1}}\right)$ – отрезок произвольной длины, взятый в мм из чертежа.

$$\mu_{V} = \frac{0,6}{50} = 0,012 \frac{\text{M/c}}{\text{MM}}$$

Из полюса P_v проводим вектор $(\overline{P_v a_1})$ длиной 50 мм перпендикулярно к звену *OA* (рисунки 3.3 *a*, *б*). Из точки a_1 проводим прямую, параллельную звену *CD*, а из полюса P_v – прямую, перпендикулярную звену *CD*. Точка пересечения этих прямых есть искомая точка a_3 . Положения точек d и s_3 на плане скоростей находим из условия пропорциональности отрезков:

$$\frac{\left(\overline{cd}\right)_{x}}{\left(\overline{CD}\right)} = \frac{\left(\overline{ca_{3}}\right)}{\left(\overline{CA}\right)} \implies \left(\overline{cd}\right)_{x} = \left(\overline{ca_{3}}\right) \cdot \frac{\left(\overline{CD}\right)}{\left(\overline{CA}\right)};$$
$$\left(\overline{cs_{3}}\right) = \frac{\left(\overline{cd}\right)}{2}.$$

Значения длин отрезков подставляем в уравнения в мм, взяв их с плана скоростей и плана механизма. Например, для второго положения:

$$\left(\overline{cd}\right)_{x} = 40, 1 \cdot \frac{120}{85} = 56, 6 \text{ MM};$$

 $\left(\overline{cs_{3}}\right) = \frac{56, 6}{2} = 28, 3 \text{ MM}.$

Скорость υ_{s_3} будет равна:

$$\upsilon_{S_3} = (\overline{cs_3}) \cdot \mu_V = 28, 3 \cdot 0,012 = 0,34 \text{ M/c}.$$

Построение плана скоростей группы из звеньев 4 и 5 проводим согласно уравнению:

$$\frac{\overline{U}_{B_5}}{\|XX} = \underbrace{\overline{U}_D}_{\pm BD} + \underbrace{\overline{U}_{B_5D}}_{\pm BD}.$$

В этом уравнении направления всех векторов известны:

 $\overline{\upsilon}_{B_5} \parallel XX$; $\overline{\upsilon}_D$ – из построения [вектор $\left(\overline{cd}\right)$ на плане скоростей]; $\overline{\upsilon}_{B_5D} \perp BD$.

Из точки *d* вектора (\overline{cd}) плана скоростей проводим перпендикуляр к звену *BD*, а из полюса P_V – горизонтальную прямую. На пересечении получим искомую точку b_5 .

Скорости υ_{B_5} и υ_{B_5D} будут равны:

$$\nu_{B_5} = \left(\overline{cb_5}\right) \cdot \mu_V = 52, 8 \cdot 0,012 = 0,63 \text{ m/c};$$
$$\nu_{B_5D} = \left(\overline{db_5}\right) \cdot \mu_V = 10,1 \cdot 0,012 = 0,12 \text{ m/c}.$$

Определим угловые скорости звеньев 3 и 4 по формулам:

$$\omega_{3} = \frac{\upsilon_{A_{3}C}}{l_{CA}} = \frac{\left(\overline{Ca_{3}}\right) \cdot \mu_{V}}{\left(\overline{CA}\right) \cdot \mu_{l}};$$
$$\omega_{4} = \frac{\upsilon_{B_{5}D}}{l_{DB}}.$$

К примеру, для второго положения получим:

$$\omega_3 = \frac{40, 1 \cdot 0, 012}{85 \cdot 0, 01} = 0,57 \text{ c}^{-1};$$
$$\omega_4 = \frac{0,12}{0,4} = 0,30 \text{ c}^{-1}.$$

оло- ние	$\left(\overline{CA}\right)$	$\left(\overline{ca_3}\right)$	$\left(\overline{a_3a_1}\right)$	$\left(\overline{db_5}\right)$	$\left(\overline{cd}\right)$	$\left(\overline{cs_3}\right)$	$\left(\overline{P_V b_5}\right)$	ν_{s_3}	\mathcal{U}_{B_5}	ω_3
Пс же	ММ	MM	ММ	ММ	ММ	MM	MM	м/с	м/с	c ⁻¹
0	67,1	0	50	0	0	0	0	0	0	0
1	77,1	23,5	44,1	9,8	36,6	18,3	32,0	0,22	0,38	0,37
2	85,0	40,1	29,9	10,1	56,6	28,3	52,8	0,34	0,63	0,57
3	89,3	48,7	11,2	4,3	65,4	32,7	64,2	0,39	0,77	0,65
4	89,6	49,2	9,1	3,5	65,9	33,0	66,7	0,40	0,80	0,66
5	85,6	41,4	28,1	9,7	58,0	29,0	60,1	0,35	0,72	0,58
6	78,1	25,6	42,9	10,3	39,3	19,7	41,6	0,24	0,50	0,39
7	68,2	2,8	49,9	1,5	4,9	2,5	5,3	0,03	0,06	0,05
к	67,1	0	50,0	0	0	0	0	0	0	0
8	58,1	24,2	43,8	13,3	50,0	25,0	53,0	0,30	0,64	0,50
9	51,2	46,0	19,5	12,5	107,8	53,9	110,5	0,65	1,33	1,08
10	50,8	47,4	16,0	10,6	112,0	56,0	108,7	0,67	1,30	1,12
11	57,1	27,0	42,1	14,5	56,7	28,4	50,1	0,34	0,60	0,57

Таблица 3.1 – Данные из плана механизма и планов скоростей

Построение плана ускорений группы Ассура II класса, II порядка, 3 вида (для положения 2)

Особенность такой группы Ассура заключается в том, что переносным движением является вращательное движение кулисы 3 вокруг точки C, а поступательным является движение кулисного камня 2 по кулисе 3. Из этого следует, что абсолютное ускорение точки A_3 равно сумме трех ускорений: переносного, относительного и кориолисова. Ускорения внешних пар (шарниров A_1 и C) известны по модулю:

$$a_{A_1} = a_{A_1}^n = \omega_1^2 \cdot l_{OA} = 3,0^2 \cdot 0,2 = 1,8 \text{ M/c}^2;$$

 $a_C = 0.$

Масштабный коэффициент плана ускорений:

$$\mu_a = \frac{a_{A_1}}{\left(\overline{\pi a_1}\right)},$$

где $(\overline{\pi a_1})$ – отрезок произвольной длины, взятый в мм из чертежа.

$$\mu_a = \frac{1.8}{144} = 0,0125 \frac{M/c^2}{MM}$$

Ускорение \overline{a}_{A_3} точки A_3 определяется по теореме Кориолиса:

$$\overline{a}_{A_3} = \overline{a}_{A_1} + \overline{a}_{A_3A_1}^{\kappa} + \overline{a}_{A_3A_1}^{r} + \overline{a}_{A_3A_1}^{r}$$

С другой стороны ускорение \overline{a}_{A_3} определяется уравнением:

$$\overline{a}_{A_3} = \overline{a}_C + \overline{a}_{A_3C}^n + \overline{a}_{A_3C}^\tau \\ \stackrel{= 0}{=} 0 \frac{\overline{a}_{A_3C}}{\overline{a}_{A_3C}} \frac{\overline{a}_{A_3C}}{\overline{a}_{A_3C}}$$

Приравнивая правые части уравнений, получим:

$$\overline{\overline{a}}_{A_{1}} + \overline{\overline{a}}_{A_{3}A_{1}}^{\kappa} + \overline{\overline{a}}_{A_{3}A_{1}}^{r} = \overline{\overline{a}}_{C} + \overline{\overline{a}}_{A_{3}C}^{n} + \overline{\overline{a}}_{A_{3}C}^{\tau} ,$$
$$\overline{||CD|} \xrightarrow{=0} \overline{||CD|} \overline{||CD|} \xrightarrow{\pm CD} ,$$

где \overline{a}_{A_1} – нормальное ускорение точки A_1 при ее движении вокруг точки O, м/с²;

- $\overline{a}_{A_{3}A_{1}}^{\kappa}$ кориолисово ускорение, м/с²;
- $\overline{a}_{A_{3}A_{1}}^{r}$ относительное ускорение поступательного движения кулисы 3 относительно кулисного камня 2, м/с²;
- $\bar{a}_{A_{3}C}^{n}$ нормальное ускорение точки A_{3} кулисы 3 в ее вращательном движении вокруг точки C, м/c²;
- $\bar{a}_{A_3C}^{\tau}$ тангенциальное ускорение точки A_3 кулисы 3 в ее вращательном движении вокруг точки C, м/c².

В данном уравнении направления всех векторов известны:

 $\bar{a}_{A_{1}} \| OA; \quad \bar{a}_{A_{3}A_{1}}^{\kappa} \perp CD; \quad \bar{a}_{A_{3}A_{1}}^{r} \| CD; \quad \bar{a}_{A_{3}C}^{n} \| CD; \quad \bar{a}_{A_{3}C}^{\tau} \perp CD.$

Кориолисово ускорение определится выражением:

$$a_{A_3A_1}^{\kappa} = 2 \cdot \omega_3 \cdot \upsilon_{A_3A_1} \cdot \sin\left(\overline{\omega}_3, \overline{\upsilon}_{A_3A_1}\right),$$

где $\upsilon_{A_3A_1} = \left(\overline{a_1a_3}\right) \cdot \mu_V = 29,9 \cdot 0,012 = 0,36$ м/с (таблица 3.1).

$$a_{A_3A_1}^{\kappa} = 2 \cdot \omega_3 \cdot \upsilon_{A_3A_1} \cdot \sin 90^\circ = 2 \cdot 0,57 \cdot 0,36 \cdot 1 = 0,41 \text{ m/c}^2.$$

Направление вектора кориолисова ускорения $\overline{a}_{A_{3}A_{1}}^{\kappa}$ определяем по правилу Н.Е. Жуковского. Для этого вектор относительной скорости $\overline{\nu}_{A_{3}A_{1}}$, который изображен вектором $(\overline{a_{1}a_{3}})$ на плане скоростей, проецируем в плоскость, перпендикулярную оси вращения (т.е. в плоскость чертежа, в которой он уже расположен). Вектор скорости $\overline{\nu}_{A_{3}A_{1}}$ направлен к той точке, которая первая стоит в его обозначении (к точке a_{3}). Остается повернуть этот вектор ($\overline{\nu}_{A_{3}A_{1}}$) по направлению угловой скорости ω_{3} кулисы 3 на 90°.

Нормальное ускорение определится выражением:

$$a_{A_3C}^n = \omega_3^2 \cdot l_{CA} = \omega_3^2 \cdot (\overline{CA}) \cdot \mu_l = 0,57^2 \cdot 85 \cdot 0,01 = 0,28 \text{ m/c}^2.$$

Вычислим масштабные отрезки ускорений $\overline{a}_{A_3A_1}^{\kappa}$ и $\overline{a}_{A_3C}^{n}$:

$$\left(\overline{a_{1}\kappa_{3}}\right) = \frac{a_{A_{3}A_{1}}^{\kappa}}{\mu_{a}} = \frac{0,41}{0,0125} = 32,8 \text{ MM};$$

 $\left(\overline{cn_{3}}\right) = \frac{a_{A_{3}C}^{n}}{\mu_{a}} = \frac{0,28}{0,0125} = 22,4 \text{ MM}.$

Из полюса π проводим вектор $(\overline{\pi a_1})$ длиной 144 мм параллельно звену *OA*, от точки *A* к точке *O*.

Рисунок 3.4 – Построение плана ускорений для положения 2

Построение левой части уравнения (рисунок 3.4)

Из точки a_1 проводим вектор $(\overline{a_1\kappa_3})$ длиной 32,8 мм перпендикулярно звену *CD* в определенном по правилу Н.Е. Жуковского направлении, далее через точку κ_3 проводим прямую, параллельную звену *CD*.

Построение правой части уравнения (рисунок 3.4)

Так как ускорение \bar{a}_{C} равно нулю, то точка *c* на плане ускорений будет находиться в полюсе π . Из полюса π плана ускорений проводим вектор (\bar{cn}_{3}) длиной 22,4 мм, параллельный звену *CD* в направлении от точки *A* к точке *C*. Через точку n_{3} проводим прямую перпендикулярно звену *CD*. Точка a_{3} пересечения прямых определит величины отрезков $(\bar{\kappa}_{3}a_{3})$ и $(\bar{n}_{3}a_{3})$, которые соответствуют модулям векторов ускорений $\bar{a}_{A_{3}A_{1}}^{r}$ и $\bar{a}_{A_{3}C}^{r}$ соответственно, изображенных в масштабе построения.

Длину вектора (\overline{cd}) на плане ускорений находим из пропорциональности отрезков:

$$\frac{\left(\overline{cd}\right)_{x}}{\left(\overline{CD}\right)} = \frac{\left(\overline{ca_{3}}\right)}{\left(\overline{CA}\right)} \implies \left(\overline{cd}\right)_{x} = \left(\overline{ca_{3}}\right) \cdot \frac{\left(\overline{CD}\right)}{\left(\overline{CA}\right)} = 57,9\frac{120}{85} = 81,7 \text{ MM};$$
$$\left(\overline{cs_{3}}\right) = \frac{81,7}{2} = 40,9 \text{ MM}.$$

Ускорение \overline{a}_{B_5} точки B_5 определится уравнением:

$$\overline{a}_{B_5} = \overline{a}_D + \overline{a}_{B_5D}^n + \overline{a}_{B_5D}^\tau,$$
$$\overline{\parallel XX} = \overline{\parallel BD} + \overline{a}_{B_5D}^{T},$$

где \bar{a}_{B_5} – ускорение ползуна 5 (направлено вдоль горизонтали), м/с²;

 $\overline{a}_{B_5D}^n$ – нормальное ускорение точки *B* звена *BD* при вращении его вокруг точки *D* (направлено вдоль оси звена 4 о точки *B* к точке *D*), м/c²:

$$a_{B_5D}^n = \omega_4^2 \cdot l_{BD} = 0,30^2 \cdot 0,4 = 0,04 \text{ M/c}^2;$$

 $\overline{a}_{B_5D}^{\tau}$ – тангенциальное ускорение точки *В* звена *BD* при вращении его вокруг точки *D* (направлено перпендикулярно к оси звена 4), м/c².

Масштабный отрезок ускорения $\overline{a}_{B,D}^n$ будет равен:

$$\left(\overline{dn_4}\right) = \frac{a_{B_5D}^n}{\mu_a} = \frac{0.04}{0.0125} = 3.2 \text{ MM}.$$

Из точки *d* плана ускорений откладываем отрезок $(\overline{dn_4})$, равный 3,2 мм, параллельно оси звена *BD* в направлении от точки *B* к точке *D*. Через точку n_4 проводим прямую перпендикулярно к оси звена *BD*. Из полюса π проводим прямую, параллельную горизонтали. Точка b_5 пересечения этих прямых определит величины отрезков $(\overline{n_4b_5})$ и $(\overline{cb_5})$, которые соответствуют модулям векторов ускорений $\overline{a}_{B_5D}^{\tau}$ и \overline{a}_{B_5} соответственно, изображенных в масштабе построения.

Численные значения ускорений точек B_5 , A_3 , S_3 , D, а также ускорений $\bar{a}_{B_5D}^{\tau}$ и $\bar{a}_{A_3C}^{\tau}$ найдем, умножив соответствующие отрезки на плане ускорений на масштабный коэффициент μ_a :

$$a_{B_5} = (\overline{cb_5}) \cdot \mu_a = 88, 6 \cdot 0,0125 = 1,11 \text{ M/c}^2;$$

$$a_{A_3} = (\overline{ca_3}) \cdot \mu_a = 57,9 \cdot 0,0125 = 0,72 \text{ M/c}^2;$$

$$a_{S_3} = (\overline{cs_3}) \cdot \mu_a = 40,9 \cdot 0,0125 = 0,51 \text{ M/c}^2;$$
$$a_{D} = \left(\overline{cd}\right) \cdot \mu_{a} = 81,7 \cdot 0,0125 = 1,02 \text{ m/c}^{2};$$

$$a_{A_{3}C}^{\tau} = \left(\overline{n_{3}a_{3}}\right) \cdot \mu_{a} = 53,4 \cdot 0,0125 = 0,67 \text{ m/c}^{2};$$

$$a_{B_{5}D}^{\tau} = \left(\overline{n_{4}b_{5}}\right) \cdot \mu_{a} = 20,1 \cdot 0,0125 = 0,25 \text{ m/c}^{2}.$$

Определим величины угловых ускорений звеньев 3 и 4 по формулам:

$$\varepsilon_{3} = \frac{a_{A_{3}C}^{\tau}}{l_{CA}} = \frac{a_{A_{3}C}^{\tau}}{\left(\overline{CA}\right) \cdot \mu_{l}};$$

$$\varepsilon_{4} = \frac{a_{B_{5}D}^{\tau}}{l_{DB}}.$$

$$\varepsilon_{3} = \frac{0,67}{85 \cdot 0,01} = 0,79 \text{ c}^{-2}.$$

$$\varepsilon_{4} = \frac{0,25}{0,4} = 0,63 \text{ c}^{-2}.$$

Определяем направление углового ускорения звена 3. Для этого мысленно переносим вектор $\bar{a}_{A_3C}^{\tau}$, который на плане ускорений изображен отрезком ($\bar{n}_3 a_3$), в точку A плана механизма. Считая точку C неподвижной, замечаем, что поворот звена 3 будет происходить по ходу часовой стрелки, значит, и направление ε_3 – по ходу часовой стрелки. Соответственно определяем направление ε_4 , мысленно перенеся вектор $\bar{a}_{B_3D}^{\tau}$ в точку B.

Проделав кинематическую часть расчета, определим значения главных векторов и главных моментов сил инерции механизма, т.е. его инерционную нагрузку:

$$P_{H5} = m_5 a_{B_5} = 40 \cdot 1,11 = 44,40 \text{ H};$$

$$P_{H3} = m_3 a_{S_3} = 15 \cdot 0,51 = 7,65 \text{ H};$$

$$M_{H3} = J_{S_3} \varepsilon_3 = 1,2 \cdot 0,79 = 0,95 \text{ H} \cdot \text{m}.$$

Координата точки качания K_3 звена 3 определится выражением:

$$l_{CK_3} = l_{CS_3} + \frac{J_{S_3}}{m_3 l_{CS_3}}.$$
$$l_{CK_3} = 0,6 + \frac{1,2}{15 \cdot 0,6} = 0,733 \text{ M}.$$

Рисунок 3.5 – Нагрузочная схема кулисного механизма

строгального станка

На плане механизма (рисунок 3.5) расстояние l_{CK_3} будет изображаться отрезком $(\overline{CK_3})$, равным:

$$\left(\overline{CK_3}\right) = \frac{l_{CK_3}}{\mu_l} = \frac{0,733}{0,01} = 73,3 \text{ MM}.$$

Методом дополнительного момента получим:

$$h = \frac{M_{H3}}{P_{H3}} = \frac{0.95}{7.65} = 0.124 \text{ M.}$$
$$\left(\bar{h}\right) = \frac{h}{\mu_l} = \frac{0.124}{0.01} = 12.4 \text{ MM.}$$

Определяем кинетическую энергию механизма Т по формуле:

$$T = T_3 + T_5,$$

где T_3 – кинетическая энергия 3-го звена, Дж;

*T*₅ – кинетическая энергия 5-го звена, Дж.

Кулиса 3 совершает только вращательное движение вокруг точки C, но ее центр масс S_3 не совпадает с центром вращения, значит:

$$T_3 = \frac{m_3 \omega_{s_3}^2}{2} + \frac{J_{s_3} \omega_3^2}{2} = \frac{15 \cdot 0.34^2}{2} + \frac{1.2 \cdot 0.57^2}{2} = 1,06 \text{ Дж}.$$

Ползун 5 движется поступательно, поэтому:

$$T_5 = \frac{m_5 v_{B_5}^2}{2} = \frac{15 \cdot 0,63^2}{2} = 7,94 \; \text{Дж} \, .$$

Тогда кинетическая энергию механизма равна:

$$T = 1,06 + 7,94 = 9$$
Дж.

Подставляя полученное значение кинетической энергии в формулу

$$J_{\Pi} = \frac{2T_{\Pi}}{\omega_1^2},$$

получим:

$$J_{\Pi} = \frac{2 \cdot 9}{3^2} = 2 \text{ K} \Gamma \cdot \text{M}^2.$$

3.3 Построение диаграммы приведенных моментов от силы полезного сопротивления

Для расчета махового колеса необходимо воспользоваться данными о скоростях звена 5 (исполнительного) в пределах рабочего хода (таблица 1.4), и диаграммой приведенных моментов $M_{\Pi_c} = f(\varphi)$ от силы полезного сопротивления Q_{Π_c} (рисунок 3.6 *а*), построенной в функции угла φ поворота кривошипа (звена приведения).

По оси абсцисс откладывается отрезок (\bar{x}) , выражающий один полный оборот кривошипа, а по оси ординат – (\bar{y}) , изображающий силу полезного (производственного) сопротивления в пределах рабочего хода.

Масштаб диаграммы от силы полезного сопротивления в функции угла поворота кривошипа:

$$\mu_{Q_{\Pi C}} = \frac{Q_{\Pi C}}{\left(\overline{y}\right)} \left[\frac{\mathrm{H}}{\mathrm{MM}}\right]; \qquad \mu_{\varphi} = \frac{2\pi}{\left(\overline{x}\right)} \left[\frac{\mathrm{pag.}}{\mathrm{MM}}\right].$$

В пределах рабочего хода $Q_{nc} = const$; отрезок (\bar{x}) рекомендуется брать 180 мм. Отсюда масштабный коэффициент угла поворота звена приведения по оси абсцисс:

$$\mu_{\varphi} = \frac{2\pi}{180} = \frac{2 \cdot 3,14}{180} = 0,03489 \frac{\text{pag.}}{\text{MM}}$$

Определим приведенный момент от силы полезного сопротивления по формуле:

$$M_{\Pi_{C}} = \frac{Q_{\Pi C} \upsilon_{B_{5}} \cos\left(\overline{Q}_{\Pi C}, \overline{\upsilon}_{B_{5}}\right)}{\omega_{1}},$$

где $Q_{\Pi C}$ – сила полезного (производственного) сопротивления (в пределах рабочего хода), Н (по заданию $Q_{\Pi C}$ =1700 H);

 υ_{B_5} – скорость точки приложения силы $Q_{\Pi C}$, м/с (в пределах рабочего хода);

 ω_1 – угловая скорость звена приведения, с⁻¹.

Учитывая, что угол $(\bar{Q}_{\Pi C}, \bar{v}_{B_5})$ между векторами $\bar{Q}_{\Pi C}$ и \bar{v}_{B_5} (в пределах рабочего хода) равен 180°, можно модуль приведенного момента сил полезного сопротивления представить так:

$$M_{\Pi_C} = \frac{Q_{\Pi C} \upsilon_{B_5} \cos 180^\circ}{\omega_1}$$

Численные значения M_{Π_C} подсчитываются для тех положений механизма, в которых действует сила сопротивления $\bar{Q}_{\Pi C}$ (в пределах рабочего хода), и сводятся в таблицу 3.2. Диаграмма приведенных моментов от силы полезного сопротивления строится в функции угла φ поворота звена приведения в масштабе:

$$\mu_{M_{II}} = \frac{M_{II_C}^{\max}}{\left(\overline{y_{M_{II}}}\right)_{\max}} \left[\frac{\mathbf{H} \cdot \mathbf{M}}{\mathbf{M}}\right].$$

		на	прив	едени	ия ме	хани	зма							
I		Положения												
	Величина				Холостой ход									
		0	1	2	3	4	5	6	7	К	8	9	10	11
	$M_{\Pi_{C}}$, Н·м	0	127,77	179,75	194,9	197,07	190,57	160,25	77,96	0	0	0	0	0
	$M_{\Pi_{C}}$ в мм чертежа в масштабе $\mu_{M_{\Pi}}$	0	103,7	145,9	158,2	160	154,7	130,1	63,3	0	0	0	0	0

Таблица 3.2 – Значения M_{Π_C} от силы $Q_{\Pi C}$ в функции угла поворота φ зве-

Рисунок 3.6 *а* – К определению момента инерции махового колеса (размеры уменьшены в 2,5 раза)

78

$$\mu_{M_{\Pi}} = \frac{M_{\Pi_{C}}^{\max}}{\left(\overline{y_{M_{\Pi}}}\right)_{\max}} = \frac{197,07}{160} = 1,2317 \frac{\text{H} \cdot \text{M}}{\text{MM}}$$

По вычисленным значениям строим *диаграмму приведенных моментов от силы полезного сопротивления* $M_{\Pi_c} = f(\varphi)$ в выбранном масштабе (рисунок 3.6 *а*). Для совмещения диаграмм $M_{\Pi_c} = f(\varphi)$ и $M_{\Pi_A} = f(\varphi)$ отрицательные значения M_{Π_c} откладываем в положительном направлении.

3.4 Построение диаграммы работ приведенных моментов от сил движущих и силы полезного сопротивления

Методом графического интегрирования строим диаграмму работ от приведенных моментов силы полезного сопротивления $A(M_{\Pi_c}) = f(\phi)$ (рисунок 3.6 *a*). Для этого выбираем полюсное расстояние H_3 , равное 60 мм. Через середины интервалов 0–1, 1–2, 2–3, ..., 11–12 проводим перпендикуляры к оси абсцисс. Через точки пересечения этих перпендикуляров с диаграммой $M_{\Pi_c} = f(\phi)$ проводим линии, параллельные оси абсцисс до пересечения с осью ординат и соединяем найденные точки с началом полюсного расстояния H_3 (точкой O_3).

Из начала координат диаграммы $A(M_{\Pi_c}) = f(\varphi)$ проводим прямые, параллельные первому лучу в пределах 0–1, второму лучу в пределах 1–2 и т.д.

Масштабный коэффициент работ определяем по формуле:

$$\mu_{A(M_{\Pi})} = \mu_{M_{\Pi}} \cdot \mu_{\varphi} \cdot H_{3}$$

где
$$\mu_{\varphi} = \frac{2\pi}{L} = \frac{2 \cdot 3.14}{180} = 0,0349 \frac{\text{рад}}{\text{мм}}.$$

 $\mu_{A(M_{II})} = 1,2317 \cdot 0,0349 \cdot 60 = 2,5796 \frac{\text{Дж}}{\text{мM}}.$

По закону передачи работы при установившемся движении машины работа движущих сил $A(M_{\Pi_{\mathcal{I}}})$ за период одного оборота кривошипа (звена приведения), т.е. за цикл, равна работе силы сопротивления $A(M_{\Pi_{\mathcal{C}}})$. При этом условии, так как $M_{\Pi_{\mathcal{I}}} = const$, диаграмма $A(M_{\Pi_{\mathcal{I}}}) = f(\varphi)$ работ сил движущих изображается в виде наклонной прямой, которая соединяет начало координат с конечной точкой кривой $A(M_{\Pi_{\mathcal{C}}}) = f(\varphi)$.

Если графически продифференцировать диаграмму $A(M_{\Pi_{\pi}}) = f(\varphi)$, то получим прямую, параллельную оси абсцисс. Эта прямая является диаграммой $M_{\Pi_{\pi}} = f(\varphi)$ приведенных моментов от сил движущих и строится для всех положений звена приведения.

3.5 Построение диаграммы приращения кинетической энергии *∆Т* в функции угла *φ*

Для построения диаграммы $\Delta T = f(\varphi)$ приращения кинетической энергии механизма с маховиком необходимо вычесть алгебраически из ординат диаграммы $A(M_{\Pi_{\pi}}) = f(\varphi)$ ординаты диаграммы $A(M_{\Pi_{c}}) = f(\varphi)$:

$$\Delta T = A\Big(M_{\Pi_{\mathcal{I}}}\Big) - A\Big(M_{\Pi_{\mathcal{C}}}\Big).$$

При этом, для удобства, отрицательные значения откладываем над осью абсцисс (рисунок 3.6 *a*).

3.6 Построение диаграммы приведенного момента инерции звеньев механизма

Для каждого положения механизма приведенный момент инерции звеньев определяется по формуле:

$$J_{II} = \frac{\sum_{i=1}^{n} \left(m_{i} \upsilon_{S_{i}}^{2} + J_{S_{i}} \omega_{i}^{2} \right)}{\omega_{1}^{2}},$$

где m_i – масса *i* -го звена, сосредоточенная в центре масс (точка S_i), кг;

 υ_{S_i} – скорость центра масс звена *i*, м/с;

$$J_{s_i}$$
 — момент инерции звена *i* относительно оси, проходящей через центр масс S_i и нормальной к плоскости движения звена, кг·м²;

$$\omega_i$$
 – угловая скорость *i* -го звена, с⁻¹;

 ω_1 – угловая скорость звена приведения, с⁻¹.

При построении диаграммы $J_{\Pi} = f(\phi)$ приведенного момента инерции от угла поворота кривошипа, ось J_{Π} ординат рекомендуется направлять горизонтально, т.е. строить эту диаграмму повернутой на 90° (рисунок 3.6 б).

Приведенный момент инерции J_{Π} звеньев механизма вычисляем по формуле:

$$J_{\Pi} = \frac{m_2 \cdot \upsilon_{S_2}^2}{\omega_1^2} + \frac{J_{S_2} \cdot \omega_2^2}{\omega_1^2} + \frac{m_5 \cdot \upsilon_{B_5}^2}{\omega_1^2}.$$

Таблица 3.3 – Значения приведенного момента инерции механизма J_{Π} в функции угла поворота звена приведения механизма φ

	Положения												
Значение				Раб	очий	ход				X	олост	гой х	од
	0	1	2	3	4	5	6	7	К	8	9	10	11
${\pmb J}_{\varPi}$, кг · м ²	0,1121	0,2056	0,2936	0,3217	0,3259	0,3138	0,2574	0,1472	0,1121	0,1760	0,8833	1,2853	0,4405
J_{Π} в мм чертежа в масштабе $\mu_{J_{\Pi}}$	14	25,6	36,5	40	40,6	39,1	32	18,3	14	21,9	110	160	54,8

Диаграмму приведенного момента инерции механизма в функции угла поворота звена приведения строим по вычисленным значениям в выбранном масштабе (рисунок 3.6 б).

Масштабный коэффициент $\mu_{J_{\Pi}}$ равен

$$\mu_{J_{II}} = \frac{J_{II}^{\max}}{\left(\overline{y_{J_{II}}}\right)_{\max}} = \frac{1,2853}{160} = 0,008 \frac{\text{K} \Gamma \cdot \text{M}^2}{\text{M} \text{M}}$$

3.7 Построение диаграммы энергомасс (метод Виттенбауэра)

Диаграмму энегромасс (рисунок 3.6 б) строим, исключая параметр φ из диаграмм $\Delta T = f(\varphi)$ и $J_{\Pi} = f(\varphi)$. Для этого из точек 0, 1', 2', ... 11' диаграммы $\Delta T = f(\varphi)$ проводим линии параллельные оси абсцисс до пересечения с прямыми, проведенными из точек 0', 1', 2', ... 12' диаграммы $J_{\Pi} = f(\varphi)$ параллельными оси ординат φ . Соединяем точки пересечения 0", 1", 2", ... 11" плавной кривой. По заданному коэффициенту неравномерности движения $\delta = 0,05$ (по заданию) и средней угловой скорости звена приведения ω_{cp} , равной $\omega_1 = 7,85 \text{ c}^{-1}$ определяем углы ψ_{max} и ψ_{min} :

$$\psi_{\min} = \operatorname{arctg} \left[\frac{\mu_{J_{II}}}{2\mu_{\Delta T}} \cdot \omega_{1}^{2} \cdot (1 - \delta) \right];$$
$$\psi_{\max} = \operatorname{arctg} \left[\frac{\mu_{J_{II}}}{2\mu_{\Delta T}} \cdot \omega_{1}^{2} \cdot (1 + \delta) \right].$$

Величины углов ψ_{\min} и ψ_{\max} определяют наклон касательных к оси абсцисс (J_{Π}) замкнутого контура диаграммы $\Delta T = f(J_{\Pi})$ энергомасс. Длина отрезка (\overline{kl}) , отсекаемого этими касательными на оси ординат ΔT , используется для определения момента инерции маховика. Отрезок (\overline{kl}) определяет кинетическую энергию маховика в масштабе $\mu_{\Delta T}$.

$$\psi_{\text{max}} = \arctan\left[\frac{0,008}{2 \cdot 2,5796} \cdot 7,85^2 \cdot (1+0,05)\right] = 5,75^{\circ}.$$
$$\psi_{\text{min}} = \arctan\left[\frac{0,008}{2 \cdot 2,5796} \cdot 7,85^2 \cdot (1-0,05)\right] = 5,21^{\circ}.$$

К диаграмме энегромасс $\Delta T = f(J_{\Pi})$ проводим две касательные под углами ψ_{max} и ψ_{min} . Эти касательные отсекут на оси ординат отрезок (\overline{kl}) , равный 96,3 мм, который определяет кинетическую энергию маховика в масштабном коэффициенте

$$\mu_{\Delta T} = \mu_{A(M_{II})} = 2,5796 \frac{\mu_{X}}{MM}.$$

Искомый момент инерции маховика определяется по формуле:

$$J_{\text{Maxobuka}} = \frac{\left(\overline{kl}\right) \cdot \mu_{\text{DT}}}{\delta \cdot \omega_{cp}^2} = \frac{96, 3 \cdot 2,5796}{0,05 \cdot 7,85^2} = 80,63 \text{ Kg} \cdot \text{M}^2.$$

3.8 Определение основных размеров и массы маховика

Момент инерции маховика и его масса зависит от его местоположения в кинематической цепи механизма. Чем выше частота вращения вала, на котором установлен маховик, тем меньше его размеры при вычисленном моменте инерции, обеспечивающем движение начального звена с номинальной средней угловой скоростью ω_{cp} и заданным коэффициентом неравномерности хода δ .

Если к ведущему звену (звену приведения) присоединим маховик с моментом инерции $J_{_{MaxoBuka}}$, тогда общий приведенный момент инерции механизма J_{OII} будет представлять сумму:

$$J_{O\Pi} = J_{\Pi} + J_{MAXOBUKA},$$

где J_{Π} – приведенный момент инерции механизма (без маховика), кг · м². Откуда

$$J_{\rm Maxobuka} = J_{O\Pi} - J_{\Pi}$$
.

Часто в практике приведенный момент инерции J_{Π} механизма очень мал по сравнению с общим приведенным моментом инерции механизма $J_{\Omega\Pi}$, тогда величиной J_{Π} пренебрегают:

$$J_{_{MAXOBUKA}} = J_{O\Pi}$$
 .

Момент инерции маховика является функцией квадрата угловой скорости вала, на котором устанавливается маховик.

Маховики изготавливают либо в виде сплошного диска со ступицей для посадки на вал (рисунок 3.7 a), либо в виде обода со спицами (рисунок 3.7 b).

Материалом для изготовления маховиков служат чугун, сталь, алюминиевые сплавы.

Рисунок 3.7 – Общий вид:

а) маховик в виде сплошного диска; б) маховик в виде обода со спицами

Если маховик выполняется в форме сплошного диска с наружным диаметром D, шириной b, то его момент инерции относительно оси вращения, проходящей через центр масс, вычисляют по формуле:

$$J_{_{MAXOBUKA}} = \frac{mD^2}{8}.$$

86

В свою очередь, масса маховика:

$$m=\rho\frac{\pi D^2}{4}b,$$

где ρ – плотность, кг/м³.

Относительная ширина маховика ($\psi_b = 0,15...0,20$):

$$\psi_b = \frac{b}{D}.$$

Для стальных маховиков можно принять $\rho = 7800 \text{ кг/m}^3$, для чугунных – $\rho = 7100 \text{ кг/m}^3$, $\psi_b = 0, 2$ – получают следующее соотношение между моментом инерции $J_{_{maxoguka}}$ сплошного диска и его наружным диаметром:

$$J_{\text{MAXOBUKA}} = \rho \frac{\pi D^2}{4} \psi_b D \frac{D^2}{8} = 7800 \cdot \frac{3.14}{32} \cdot 0.2 \cdot D^5 = 153,08D^5.$$

Тогда:

$$D = \sqrt[5]{\frac{J_{Maxobuka}}{153,08}};$$

$$D = 0,366\sqrt[5]{J_{Maxobuka}};$$

$$m = \frac{8J_{Maxobuka}}{D^{2}};$$

$$b_{cm} = 1,5b.$$

Приведем некоторые числовые значения

$J_{_{MAXOBUKA}}, \ \mathrm{KF} \cdot \mathrm{M}^2$	0,01	0,1	10	100
<i>D</i> , м	0,146	0,230	0,580	0,919
<i>т</i> , кг	3,75	15,1	238	947

В ряде случаев маховик выполняют в виде массивного обода, который связан со ступицей более тонким диском или спицами.

Масса обода маховика:

$$m = \rho b \left(\frac{\pi D^2}{4} - \frac{\pi d^2}{4} \right) = \rho b \frac{\pi}{4} \left(D^2 - d^2 \right).$$

Приняв отношения $\psi_b = \frac{b}{D}$ и $\psi_{\Pi} = \frac{d}{D}$, момент инерции обода махови-

ка определяют по формуле:

$$J_{\text{MAXOBUKA}} = \frac{m}{8} (D^2 + d^2) = \rho b \frac{\pi}{32} (D^4 - d^4);$$
$$J_{\text{MAXOBUKA}} = \rho \psi_b \frac{\pi}{32} (1 - \psi_{\Pi}^4) D^5.$$

Для частных значений $\rho = 7800$ кг/м³, $\psi_b = 0,2$; последнее соотношение принимает вид:

$$\begin{aligned} &- \operatorname{при} \psi_{\Pi} = 0,6, \quad J_{\text{маховика}} = 133,24D^{5}; \quad D = 0,376\sqrt[5]{J_{\text{маховика}}}; \\ &- \operatorname{при} \psi_{\Pi} = 0,7, \quad J_{\text{маховика}} = 116,32D^{5}; \quad D = 0,386\sqrt[5]{J_{\text{маховика}}}; \\ &- \operatorname{при} \psi_{\Pi} = 0,8, \quad J_{\text{маховика}} = 90,38D^{5}; \quad D = 0,406\sqrt[5]{J_{\text{маховика}}}; \\ &- \operatorname{при} \psi_{\Pi} = 0,9, \quad J_{\text{маховика}} = 52,64D^{5}; \quad D = 0,453\sqrt[5]{J_{\text{маховика}}}. \end{aligned}$$

Назначив наружный диаметр D обода, определяют ширину обода $b = \psi_b D$, внутренний диаметр $d = \psi_{\Pi} D$ и рассчитывают массу обода маховика:

$$m = \rho b \frac{\pi}{4} \left(D^2 - d^2 \right).$$

Приняв $\rho = 7800$ кг/м³, получим частное значение

$$m=6123b\left(D^2-d^2\right),$$

где *т* – масса обода, кг;

D – наружный диаметр обода, м;

d – внутренний диаметр обода, м;

b – ширина обода маховика, м.

Для сопоставления с вариантом маховика в виде сплошного диска приведем один числовой пример, когда маховик с $J_{_{MAXOBUKA}} = 10 \text{ кг} \cdot \text{м}^2$ выполнен в виде обода со спицами (при $\psi_{\Pi} = 0,8$):

$$D = 0,406\sqrt[5]{10} = 0,406 \cdot 1,585 = 0,644 \text{ м};$$

$$d = \psi_{\Pi} D = 0,8 \cdot 0,644 = 0,515 \text{ м};$$

$$b = \psi_{b} D = 0,2 \cdot 0,644 = 0,129 \text{ m};$$

$$m = 7800 \cdot 0,129 \frac{3,14}{4} (0,644^{2} - 0,515^{2}) = 118,09 \text{ кг}.$$

Масса обода маховика оказалась в 2,02 раза меньше, чем масса маховика в виде сплошного диска при одном и том же моменте инерции.

Если размеры и масса маховика превышают допустимые пределы, то маховик устанавливают на более быстрый вал, так как момент инерции маховика можно при этом уменьшить на величину квадрата передаточного отношения *и* угловых скоростей соответствующих валов.

3.9 Пример расчета маховика для шестизвенного рычажного механизма строгального станка

1. Построение диаграммы $M_{\Pi_{C}} = f(\varphi)$ приведенного момента от силы полезного сопротивления $Q_{\Pi_{C}}$.

$$M_{\Pi_{C}} = \frac{Q_{\Pi C} \upsilon_{B_{5}} \cos\left(\overline{Q}_{\Pi C}, \overline{\upsilon}_{B_{5}}\right)}{\omega_{1}}.$$

Подставляя в это уравнение значение скорости $\overline{\upsilon}_{B_5}$ для положений механизма (рисунки 3.3 *a*, *б*), соответствующих рабочему ходу ползуна, получим значения M_{Π_c} (таблица 3.4).

Таблица 3.4 – Значения	приведенного	момента	OT	силы	полезного	сопро-
тивления						

	Положение кривошипа															
Величина				Pac	Рабочий ход							Холостой ход				
	0	1	2	3	4	5	6	7	К	8	9	10	11			
U_{B_5} , M/C	0	0,38	0,63	0,77	0,80	0,72	0,50	0,06	0	0,64	1,33	1,30	0,60			
M_{Π_C} , Н·м	0	103,87	172,20	210,47	218,67	196,80	136,67	16,40	0	0	0	0	0			
$\left(\overline{y_{M_{II}}}\right)$, MM	0	19,0	31,5	38,5	40,0	36,0	25,0	3,0	0	0	0	0	0			
Q_{Π_C},H			Ç	$Q_{\Pi_C} = a$	const =	= 820 H	H				Q_{Π_C}	=0				

Определим масштабный коэффициент диаграммы $M_{\Pi_C} = f(\varphi)$. По оси абсцисс для угла φ поворота кривошипа получим:

$$\mu_{\varphi} = \frac{\varphi_{u}}{L},$$

где *L* – длина отрезка, отображающего угол φ поворота кривошипа за период одного цикла, мм.

$$\mu_{\varphi} = \frac{2\pi}{L} = \frac{2 \cdot 3,14}{78,5} = 0,08 \frac{\text{pag.}}{\text{MM}}$$

Для приведенного момента M_{Π_c} от силы полезного сопротивления масштаб определяется по формуле:

$$\mu_{M_{\Pi}} = \frac{M_{\Pi_C}^{\max}}{\left(\overline{y_{M_{\Pi}}}\right)_{\max}},$$

где $\left(\overline{y_{M_{II}}}\right)_{max}$ – высота ординаты наибольшего значения приведенного мо-

мента M_{Π_C} , мм.

Примем $\left(\overline{y_{M_{II}}}\right)_{\max} = 40$ мм, тогда:

$$\mu_{M_{II}} = \frac{218,67}{40} = 5,4668 \frac{\text{H} \cdot \text{M}}{\text{MM}}.$$

Поделив значения M_{Π_c} для каждого положения кривошипа на величину масштабного коэффициента $\mu_{M_{\Pi}}$, определим ординаты для построения диаграммы $M_{\Pi_c} = f(\varphi)$ (таблица 3.4).

По данным таблицы 3.4 строим диаграмму $M_{\Pi_c} = f(\varphi)$ (рисунок 3.8).

Затем графическим интегрированием диаграммы $M_{\Pi_c} = f(\varphi)$ строим диаграмму $A(M_{\Pi_c}) = f(\varphi)$ работ от приведенных моментов силы полезно-го сопротивления (рисунок 3.8).

Чтобы построить диаграмму $A(M_{\Pi_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}) = f(\varphi)$ работ от приведенных моментов движущих сил, надо предположить, что движущий момент $M_{\Pi_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}}$ постоянен по времени ($M_{\Pi_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}} = const$). Тогда диаграмма $A(M_{\Pi_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}) = f(\varphi)$ будет представлять наклонную прямую, соединяющую точку *C* диаграммы $A(M_{\Pi_{\mathcal{C}}}) = f(\varphi)$ с начало координат.

Продифференцировав диаграмму $A(M_{\Pi_{\pi}}) = f(\varphi)$, получим на диаграмме приведенных моментов прямую $M_{\Pi_{\pi}} = f(\varphi)$, параллельную оси абсцисс, которая и будет диаграммой приведенных моментов от сил движущих (рисунок 3.8).

Масштабный коэффициент диаграмм работ определим по формуле:

$$\mu_{A(M_{\Pi})} = \mu_{M_{\Pi}} \cdot \mu_{\varphi} \cdot H_3,$$

где H_3 – полюсное расстояние, мм (принимаем $H_3 = 30$ мм).

Подставив принятые значения, находим:

$$\mu_{A(M_{\Pi})} = 5,4668 \cdot 0,08 \cdot 30 = 13,1203 \frac{\Pi \pi}{MM}.$$

Вычитая ординаты работы приведенных моментов силы полезного сопротивления из ординат работы приведенных моментов сил движущих для каждого положения механизма, построим диаграмму $\Delta T = f(\varphi)$ приращения кинетической энергии механизма от угла φ поворота кривошипа (рисунок 3.8). Масштабный коэффициент диаграммы $\Delta T = f(\varphi)$ по оси ординат будет равен масштабному коэффициенту диаграммы работ:

$$\mu_{\Delta T} = \mu_{A(M_{II})} = 13,1203 \frac{\Pi m}{MM}$$

С целью построения диаграммы зависимости приведенного момента инерции J_{Π} механизма от угла φ поворота кривошипа запишем для заданного механизма строгального станка уравнение приведенного момента инерции:

$$J_{II} = \frac{m_3 v_{s_3}^2}{\omega_1^2} + \frac{J_{s_3} \omega_3^2}{\omega_1^2} + \frac{m_5 v_{B_5}^2}{\omega_1^2}.$$

Подставляя в это уравнение величины скоростей из таблицы 3.1, а массы и момент инерции – из задания, вычислим значение J_{II} для всех положений кривошипа: $\omega_1 = 3 \text{ c}^{-1}$; $m_3 = 15 \text{ кг}$; $m_5 = 40 \text{ кг}$; $J_{S_3} = 1,2 \text{ кг} \cdot \text{m}^2$.

$$\begin{split} J_{\Pi 0} &= \frac{15 \cdot 0}{3^2} + \frac{1, 2 \cdot 0}{3^2} + \frac{40 \cdot 0}{3^2} = 0; \\ J_{\Pi 1} &= \frac{15 \cdot 0, 22^2}{3^2} + \frac{1, 2 \cdot 0, 37^2}{3^2} + \frac{40 \cdot 0, 38^2}{3^2} = 0,741 \text{ Kr} \cdot \text{M}^2; \\ J_{\Pi 2} &= \frac{15 \cdot 0, 34^2}{3^2} + \frac{1, 2 \cdot 0, 57^2}{3^2} + \frac{40 \cdot 0, 63^2}{3^2} = 2,000 \text{ Kr} \cdot \text{M}^2; \\ J_{\Pi 3} &= \frac{15 \cdot 0, 39^2}{3^2} + \frac{1, 2 \cdot 0, 65^2}{3^2} + \frac{40 \cdot 0, 77^2}{3^2} = 2,945 \text{ Kr} \cdot \text{M}^2; \\ J_{\Pi 4} &= \frac{15 \cdot 0, 40^2}{3^2} + \frac{1, 2 \cdot 0, 66^2}{3^2} + \frac{40 \cdot 0, 80^2}{3^2} = 3,169 \text{ Kr} \cdot \text{M}^2; \end{split}$$

$$\begin{split} J_{II5} &= \frac{15 \cdot 0,35^2}{3^2} + \frac{1,2 \cdot 0,58^2}{3^2} + \frac{40 \cdot 0,72^2}{3^2} = 2,553 \text{ Kr} \cdot \text{m}^2; \\ J_{II6} &= \frac{15 \cdot 0,24^2}{3^2} + \frac{1,2 \cdot 0,39^2}{3^2} + \frac{40 \cdot 0,50^2}{3^2} = 1,227 \text{ Kr} \cdot \text{m}^2; \\ J_{II7} &= \frac{15 \cdot 0,03^2}{3^2} + \frac{1,2 \cdot 0,05^2}{3^2} + \frac{40 \cdot 0,06^2}{3^2} = 0,018 \text{ Kr} \cdot \text{m}^2; \\ J_{II8} &= \frac{15 \cdot 0}{3^2} + \frac{1,2 \cdot 0}{3^2} + \frac{40 \cdot 0}{3^2} = 0; \\ J_{II8} &= \frac{15 \cdot 0,30^2}{3^2} + \frac{1,2 \cdot 0,50^2}{3^2} + \frac{40 \cdot 0,64^2}{3^2} = 2,004 \text{ Kr} \cdot \text{m}^2; \\ J_{II9} &= \frac{15 \cdot 0,65^2}{3^2} + \frac{1,2 \cdot 1,08^2}{3^2} + \frac{40 \cdot 1,33^2}{3^2} = 8,721 \text{ Kr} \cdot \text{m}^2; \\ J_{II10} &= \frac{15 \cdot 0,67^2}{3^2} + \frac{1,2 \cdot 1,12^2}{3^2} + \frac{40 \cdot 1,30^2}{3^2} = 8,427 \text{ Kr} \cdot \text{m}^2; \\ J_{II11} &= \frac{15 \cdot 0,34^2}{3^2} + \frac{1,2 \cdot 0,57^2}{3^2} + \frac{40 \cdot 0,60^2}{3^2} = 1,836 \text{ Kr} \cdot \text{m}^2. \end{split}$$

Значения υ_{S_3} , ω_3 , υ_{B_5} , J_{Π} и его ординаты $(\overline{y_{J_{\Pi}}})$ сведены в таблицу 3.5. Величины ординат $(\overline{y_{J_{\Pi}}})$ диаграммы $J_{\Pi} = f(\varphi)$ вычислены с учетом масштабного коэффициента:

$$\mu_{J_{\Pi}} = \frac{J_{\Pi}^{\max}}{\left(\overline{y_{J_{\Pi}}}\right)_{\max}},$$

где J_{II}^{\max} – наибольшее значение приведенного момента инерции, кг · м²; $\left(\overline{y_{J_{II}}}\right)_{\max}$ – максимальная величина ординат диаграммы $J_{II} = f(\varphi)$, мм. Примем $\left(\overline{y_{J_{II}}}\right)_{\max} = 80$ мм, тогда

$$\mu_{J_{II}} = \frac{8,721}{80} = 0,109 \frac{\mathrm{KF} \cdot \mathrm{M}^2}{\mathrm{MM}}.$$

Величины ординат для остальных положений механизма вычисляются из соотношения:

$$\left(\overline{y_{J_{\Pi}}}\right)_{i} = \frac{J_{\Pi i}}{\mu_{J_{\Pi}}}$$

Например, для 2-го положения находим:

$$\left(\overline{y_{J_{II}}}\right)_2 = \frac{J_{II2}}{\mu_{J_{II}}} = \frac{2,000}{0,109} = 18,3 \text{ MM}$$

Таблица 3.5 – Значения приведенного момента инерции

					Пол	ожен	ие кр	ивош	ипа				
Величина				Холостой ход									
	0	1	2	3	4	5	6	7	К	8	9	10	11
$ u_{S_3}$, м/с	0	0,22	0,34	0,39	0,40	0,35	0,24	0,03	0	0,30	0,65	0,67	0,34
ω_3, c^{-1}	0	0,37	0,57	0,65	0,66	0,58	0,39	0,05	0	0,50	1,08	1,12	0,57
<i>U</i> _{<i>B</i>₅} , м/с	0	0,38	0,63	0,77	0,80	0,72	0,50	0,06	0	0,64	1,33	1,30	0,60
J_{Π} , КГ · М ²	0	0,741	2,000	2,945	3,169	2,553	1,227	0,018	0	2,004	8,721	8,427	1,836
$\left(\overline{y_{J_{II}}}\right)$, MM	0	6,8	18,3	27,0	29,1	23,4	11,3	0,2	0	18,4	80,0	77,3	16,8

По ординатам $(\overline{y_{J_{\Pi}}})$ строим диаграмму $J_{\Pi} = f(\phi)$ приведенного момента инерции механизма (рисунок 3.8).

При построении диаграммы $J_{\Pi} = f(\phi)$ ось ординат J_{Π} направляем горизонтально, т.е. строим эту диаграмму повернутую на 90° в том же масштабе угла поворота $\mu_{\phi} = 0,08 \frac{\text{рад.}}{\text{мм}}$. При таком построении диаграмм $\Delta T = f(\phi)$ и $J_{\Pi} = f(\phi)$ строим диаграмму энергомасс $\Delta T = f(J_{\Pi})$, исключив графически угол поворота ϕ . Порядок построения диаграммы энергомасс приведен на рисунке 3.8.

По заданному коэффициенту неравномерности хода $\delta = 0,04$ и средней угловой скорости $\omega_{cp} = \omega_1 = 3 \text{ c}^{-1}$ определяются углы наклона касательных:

$$\psi_{\min} = \arctan\left[\frac{\mu_{J_{\Pi}}}{2\mu_{\Delta T}} \cdot \omega_{1}^{2} \cdot (1-\delta)\right] = \arctan\left[\frac{0,109}{2 \cdot 13,1203} \cdot 3^{2} \cdot (1-0,04)\right] = 2,06^{\circ};$$

$$\psi_{\max} = \arctan\left[\frac{\mu_{J_{\Pi}}}{2\mu_{\Delta T}} \cdot \omega_{1}^{2} \cdot (1+\delta)\right] = \arctan\left[\frac{0,109}{2 \cdot 13,1203} \cdot 3^{2} \cdot (1+0,04)\right] = 2,23^{\circ}.$$

Проводим к кривой $\Delta T = f(J_{\Pi})$ две касательные: сверху под углом ψ_{max} и снизу под углом ψ_{min} к горизонтали. Они пересекут в точках l и k ось ординат ΔT . Получим отрезок (\overline{kl}) равный 19,6 мм, выражающий в масштабе $\mu_{\Delta T}$ избыточную работу или величину кинетической энергии, которую должен аккумулировать маховик.

Вычислим момент инерции маховика:

$$J_{\text{Maxobuka}} = \frac{\left(\overline{kl}\right) \cdot \mu_{\Delta T}}{\delta \cdot \omega_{cp}^2} = \frac{19, 6 \cdot 13, 1203}{0, 04 \cdot 3^2} = 714, 33 \text{ Kr} \cdot \text{m}^2.$$

Выполним расчеты по определению геометрических размеров маховика с тяжелым ободом и спицами.

Наружный диаметр маховика:

$$D = 0,406\sqrt[5]{J_{\text{MAXOBUKA}}} = 0,406\sqrt[5]{714,33} = 1,51 \text{ M}.$$

Принимаем $\psi_{\Pi} = \frac{d}{D} = 0,8.$

Внутренний диаметр $d = \psi_{\Pi} D = 0, 8 \cdot 1, 51 = 1, 21$ м.

Относительная ширина бандажного кольца маховика $\psi_b = \frac{b}{D}$, принимаем $\psi_b = 0, 2$, тогда ширина обода:

$$b = \psi_b D = 0, 2 \cdot 1, 51 = 0, 30$$
 M

Из конструктивных соображений имеем:

$$b_{cm} = 1,5b = 1,5 \cdot 0,30 = 0,45$$
 м;
 $d_{cm} = 0,15D = 0,15 \cdot 1,51 = 0,23$ м.

Выполняем эскиз маховика в масштабе:

$$\mu_{\text{маховика}} = \frac{D}{\left(\overline{D}\right)} = \frac{1,51}{151} = 0,01 \frac{\text{M}}{\text{MM}};$$

$$\left(\overline{d}\right) = \frac{d}{\mu_{\text{маховика}}} = \frac{1,21}{0,01} = 121 \text{ MM};$$

$$\left(\overline{b_{cm}}\right) = \frac{b_{cm}}{\mu_{\text{маховика}}} = \frac{0,45}{0,01} = 45 \text{ MM};$$

$$\left(\overline{d_{cm}}\right) = \frac{d_{cm}}{\mu_{\text{маховика}}} = \frac{0,23}{0,01} = 23 \text{ MM}.$$

Литература

- Артоболевский, И.И. Теория механизмов и машин: учебник для втузов / И.И. Артоболевский. 6-е изд., стер., перепеч. с изд. 1988 г. М.: Альянс, 2011. 640 с.
- Леонов, И.В. Теория механизмов и машин: учебное пособие для вузов / И.В. Леонов, Д.И. Леонов. – М.: Высшее образование, 2009. – 239 с.
- Матвеев, Ю.А. Теория механизмов и машин: учебное пособие / Ю.А. Матвеев, Л.В. Матвеева. – М.: Альфа-М, ИНФРА-М, 2011. – 320 с.
- Смелягин, А.И. Теория механизмов и машин. Курсовое проектирование / А.И. Смелягин. – М.: ИНФРА-М, 2012. – 263 с.
- Теория механизмов и машин. Курсовое проектирование: учебное пособие / под ред. Г.А. Тимофеева и Н.В. Умнова. 2-е изд. М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. 169 с.
- Тимофеев, Г.А. Теория механизмов и машин: учебное пособие для бакалавров / Г.А. Тимофеев. – 2-е изд., перераб. и доп. – М.: Изд-во «Юрайт», 2013. – 351 с.
- Фролов, К.В. Теория механизмов и механика машин: учебник для втузов / К.В. Фролов, Г.А. Тимофеев. – 7-е изд. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. – 986 с.

Учебное издание

Плешаков Вадим Николаевич, Курасов Владимир Станиславович, Самурганов Евгений Ерманикосович, Букаткин Рустем Николаевич

Теория механизмов и машин: курсовое проектирование

Учебно-методическое пособие

Компьютерная верстка – Р.Н. Букаткин

Подписано в печать «19» июня 2013 г. Бумага офсетная. Формат 60×84 ½. Тираж 50 экз. Усл. печ. л. – 7. Уч.-изд. л. – 5,7. Заказ № 444

Типография Кубанского государственного аграрного университета, 350044, г. Краснодар, ул. Калинина, 13